精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx+c与x轴相交于A、B两点,点B的坐标为(3,0),与y轴相交于点C(0,﹣3),顶点为D.

(1)求出抛物线y=x2+bx+c的表达式;
(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①当m为何值时,四边形PEDF为平行四边形.
②设四边形OBFC的面积为S,求S的最大值.

【答案】
(1)

解:∵抛物线过B、C两点,

,解得

∴抛物线表达式为y=x2﹣2x﹣3


(2)

解:①∵B(3,0),C(0,﹣3),

∴直线BC解析式为y=x﹣3,

∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴D(1,﹣4),

∴E(1,﹣2),

∴DE=﹣2﹣(﹣4)=2,

∵PF∥DE,且P(m,m﹣3),

∴F(m,m2﹣2m﹣3),

∵点P为线段BC上的一个动点,

∴PF=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,

当四边形PEDF为平行四边形时,则有PF=DE=2,

即﹣m2+3m=2,解得m=1(舍去)或m=2,

∴当m的值为2时,四边形PEDF为平行四边形;②由①可知PF=﹣m2+3m,

∴SFBC= PFOB= ×3(﹣m2+3m)=﹣ (m﹣ 2+

∵SOBC= OBOC= ×3×3=

∴S=SFBC+SOBC=﹣ (m﹣ 2+ + =﹣ (m﹣ 2+

∵﹣ <0,

∴当m= 时,S有最大值


【解析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的表达式;(2)①可求得直线BC的解析式,则可表示出P、F的坐标,从而可表示出PF和DE的长,由平行四边形的性质可知PF=DE,则可得到关于m的方程,可求得m的值;②用m可表示出PF的长,则可表示出△BCF的面积,从而可表示出四边形OBFC的面积,利用二次函数的性质可求得其最大值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:

(1)如图①,求证:OB∥AC.

(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.求∠EOC的度数.

(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).下列结论:
①ac<0;
②4a﹣2b+c>0;
③抛物线与x轴的另一个交点是(4,0);
④点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2 . 其中正确的个数为( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC中,AD平分 BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧做弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,则BE的长是( ).

A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(A2013防城港)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下: 甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断(  )

A.甲正确,乙错误
B.乙正确,甲错误
C.甲、乙均正确
D.甲、乙均错误

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用圆规、直尺作图,不写作法,但到保留作图痕迹.
已知:线段a,
求作:正方形ABCD,使其对角线AC=a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校教学楼AB的后面有一建筑物CD,在距离CD的正后方30米的观测点P处,以22°的仰角测得建筑物的顶端C恰好挡住教学楼的顶端A,而在建筑物CD上距离地面3米高的E处,测得教学楼的顶端A的仰角为45°,求教学楼AB的高度.
(参考数据:sin22°≈ ,cos22°≈ ,tan22°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC⊥BC,AD⊥BD,E为AB的中点,

(1)如图1,求证:ECD是等腰三角形;

(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是(  )
A.2
B.3
C.4
D.5

查看答案和解析>>

同步练习册答案