精英家教网 > 初中数学 > 题目详情

【题目】定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是(  )
A.2
B.3
C.4
D.5

【答案】C
【解析】解:如图, ∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,
到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,
∴“距离坐标”是(1,2)的点是M1、M2、M3、M4 , 一共4个.
故选C.

【考点精析】本题主要考查了坐标确定位置和点到直线的距离的相关知识点,需要掌握对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标;从直线外一点到这条直线的垂线段的长度叫做点到直线的距离才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴相交于A、B两点,点B的坐标为(3,0),与y轴相交于点C(0,﹣3),顶点为D.

(1)求出抛物线y=x2+bx+c的表达式;
(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.
①当m为何值时,四边形PEDF为平行四边形.
②设四边形OBFC的面积为S,求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABE中,∠A=105°,AE的垂直平分线MNBE于点C,且AB+BC=BE,则∠B的度数是(  )

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为适应日益激烈的市场竞争要求,某工厂从2016年1月且开始限产,并对生产线进行为期5个月的升降改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2016年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:
(1)分别求该工厂对生产线进行升级改造前后,y与x之间的函数关系式;
(2)到第几个月时,该工厂月利润才能再次达到100万元?
(3)当月利润少于50万元时,为该工厂的资金紧张期,问该工厂资金紧张期共有几个月?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南山植物园中现有A、B两个园区,已知A园区为长方形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.

(1)请用代数式表示A、B两园区的面积之和并化简;

(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.

①求x、y的值;

②若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如表:

求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是(  )

A. 小明中途休息用了20分钟

B. 小明休息前爬山的平均速度大于休息后爬山的平均速度

C. 小明在上述过程中所走的路程为6600米

D. 小明休息前爬山的平均速度为每分钟70米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】点B(a,5)在第二象限,点C在y轴上移动,以BC为斜边作等腰直角△BCD,我们发现直角顶点D点随着C点的移动也在一条直线上移动,这条直线的函数表达式是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组想测量位于一池塘两端的A、B之间的距离,组长小明带领小组成员沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到达点D处,测得∠BDF=60°,已知AB与EF之间的距离为60米,求A、B两点的距离.

查看答案和解析>>

同步练习册答案