【题目】某兴趣小组想测量位于一池塘两端的A、B之间的距离,组长小明带领小组成员沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到达点D处,测得∠BDF=60°,已知AB与EF之间的距离为60米,求A、B两点的距离.
科目:初中数学 来源: 题型:
【题目】定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】虽然近几年无锡市政府加大了太湖水治污力度,但由于大规模、高强度的经济活动和日益增加的污染负荷,使部分太湖水域水质恶化,富营养化不断加剧.为了保护水资源,我市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:
月用水量(吨) | 单价(元/吨) |
不大于10吨部分 | 1.5 |
大于10吨不大于m吨部分(20≤m≤50) | 2 |
大于m吨部分 | 3 |
(1)若某用户六月份用水量为18吨,求其应缴纳的水费;
(2)记该用户六月份用水量为x吨,缴纳水费为y元,试列出y关于x的函数关系式;
(3)若该用户六月份用水量为40吨,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将两块直角三角尺的60°角和90°角的顶点A叠放在一起.将三角尺ADE绕点A旋转,旋转过程中三角尺ADE的边AD始终在∠BAC的内部在旋转过程中,探索:
(1)∠BAE与∠CAD的度数有何数量关系,并说明理由;
(2)试说明∠CAE﹣∠BAD=30°;
(3)作∠BAD和∠CAE的平分线AM、AN,在旋转过程中∠MAN的值是否发生变化?若不变,请求出这个定值;若变化,请求出变化范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.
(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;
(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°,已知tan∠ABC= ,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥BC,则A,B两点间的距离为米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于点D,DE⊥AB交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中,正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市今年1月份起调整居民用水价格,每立方米水费上涨25%,小明家去年12
月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比12
月份多6 m3,求该市今年居民用水的价格.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com