精英家教网 > 初中数学 > 题目详情

【题目】如图,一条公路的转弯处是一段圆弧

(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)
(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.

【答案】
(1)

解:如图1,点O为所求


(2)

解:连接OA,OC,OC交AB于D,如图2,

∵C为的中点,

∴OC⊥AB,

∴AD=BD=AB=40,

设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,

在Rt△OAD中,∵OA2=OD2+BD2

∴r2=(r﹣20)2+402,解得r=50,

所在圆的半径是50m.


【解析】(1)连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;
(2)连接OA,OC,OC交AB于D,如图2,根据垂径定理的推论,由C为的中点得到OC⊥AB,AD=BD=AB=40,则CD=20,设⊙O的半径为r,在Rt△OAD中利用勾股定理得到r2=(r﹣20)2+402 , 然后解方程即可.
本题考查了圆的相关概念,根据三点找所在圆的圆心,以及垂径定理,勾股定理的应用。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.

(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).

(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;
(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2 , 点C2在AB上.
①旋转角为多少度?
②写出点B2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:

(1)该班的学生共有 人;
(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;
(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是(  )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是(  )

A.凌晨4时气温最低为﹣3℃
B.14时气温最高为8℃
C.从0时至14时,气温随时间增长而上升
D.从14时至24时,气温随时间增长而下降

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:
(1)max{5,2}= , max{0,3}=
(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;
(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A(4,﹣2),B(0,2),C(a,﹣a),a为实数,当△ABC的周长最小时,a的值是( )
A.﹣1
B.0
C.1
D.

查看答案和解析>>

同步练习册答案