精英家教网 > 初中数学 > 题目详情

【题目】如图,线段PQ1,点P1是线段PQ的中点,点P2是线段P1Q的中点,点P3是线段P2Q的中点..以此类推,点pn是线段pn1Q的中点.

1)线段P3Q的长为   

2)线段pnQ的长为   

3)求PP1+P1P2+P2P3+…+P9P10的值.

【答案】1;(2;(3

【解析】

1)根据题意,可以写出线段P3Q的长,本题得以解决;

2)根据题意,可以写出前几条线段的长,从而可以发现线段长度的变化规律,从而可以写出线段pnQ的长;

3)根据图形和前面发现的规律,可以求而求得PP1+P1P2+P2P3+…+P9P10的值.

解:(1)由已知可得,

P1Q的长是

P2Q的长是

P3Q的长是

2)由已知可得,

P1Q的长是

P2Q的长是

P3Q的长是

PnQ的长是

3PP1+P1P2+P2P3+…+P9P10

=(1P1Q+P1QP2Q+P2QP3Q+…+P9QP10Q

1P1Q+P1QP2Q+P2QP3Q+…+P9QP10Q

1P10Q

1﹣(10

1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有   人,扇形统计图中“了解”部分所对应扇形的圆心角为   度;

(2)请补全条形统计;

(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的边长为4,点是对角线的中点,点分别在边上运动,且保持,连接.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是(

A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】线段AB和线段CD交于点O,OE平分∠AOC,F为线段AB上一点(不与点A和点O重合)过点F FG//OE,交线段CD于点G,若∠AOD=110°,则∠AFG的度数为_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了你对哪类在线学习方式最感兴趣的调查,并根据调查结果绘制成如下两幅不完整的统计图.

1)求本次调查的学生总人数,并补全条形统计图;

2)求扇形统计图中在线讨论对应的扇形圆心角的度数;

3)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在东西向的马路上有一个巡岗亭,巡岗员从岗亭出发以速度匀速来回巡逻,如果规定向东巡逻为正,向西巡逻为负,巡逻情况记录如下:(单位:千米)

第一次

第二次

第三次

第四次

第五次

第六次

第七次

1)第几次结束时巡逻员甲距离岗亭最远?距离有多远?

2)甲巡逻过程中配置无线对讲机,并一直与留守在岗亭的乙进行通话,问甲巡逻过程中,甲与乙保持通话的时长共多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,那么成立吗?为什么?下面是小丽同学进行的推理,请你将小丽同学的推理过程补充完整.

解:成立,理由如下:

(已知)

(同旁内角互补,两条直线平行)

(②

(已知),(等量代换)

(③

(④ ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校为了更新体育器材,计划购买足球和篮球共100个,经市场调查:购买2个足球和5个篮球共需600元;购买3个足球和1个篮球共需380元。

1)请分别求出足球和篮球的单价;

2)学校去采购时恰逢商场做促销活动,所有商品打九折,并且学校要求购买足球的数量不少于篮球数量的3倍,设购买足球a个,购买费用W元。

①写出W关于a的函数关系式,

②设计一种实际购买费用最少的方案,并求出最少费用。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点Ax轴上,点By轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.

(1)求该抛物线的解析式;

(2)根据图象直接写出不等式ax2+(b﹣1)x+c2的解集;

(3)点P是抛物线上一动点,且在直线AB上方,过点PAB的垂线段,垂足为Q点.当PQ=时,求P点坐标.

查看答案和解析>>

同步练习册答案