【题目】如图,在ABCD中,∠B=60°,AB=6,BC=12.点E是BC上一动点,将△ABE沿直线AE折叠,得到△AFE,则当AF与ABCD的边垂直时,BE的长为_____.
【答案】12﹣6或66
【解析】
如图1,当AF⊥BC时,由∠B=60°可得∠BAG=30°,利用含30°角的直角三角形的性质可求出BG、AG的长,设BE=x,根据折叠的性质可得AF=AB,BE=EF,可得FG的长,可用x表示出EG的长,利用勾股定理列方程求出x的值即可;当AF⊥AB时,如图2,过E作EG⊥AB于点G,设BG=x,利用∠B的正切值可得EG=x,由折叠性质可证明△AGE是等腰直角三角形,可得AG=EG,根据BG+AG=AB列方程可求出x的值,利用∠B的余弦值求出BE的长即可.
如图1,当AF⊥BC时,则∠EGF=90°,
设BE=EF=x,
在Rt△ABG中,∠B=60°,AB=6,
∴∠BAG=30°,
∴BG3,AGAB=3,
∵将△ABE沿直线AE折叠,得到△AFE,
∴AF=AB=6,BE=EF=x,
∴EG=BG﹣BE=3﹣x,FG=AF﹣AG=6﹣3,
∵EF2﹣EG2=GF2,
∴,
解得,x=12﹣6,
即BE=12﹣6;
当AF⊥AB时,如图2,
过E作EG⊥AB于点G,设BG=x,则
EG=BGtan60°=x,
∵将△ABE沿直线AE折叠,得到△AFE,∠BAF=90°,
∴∠EAG∠BAF=45°,
∴△AGE是等腰直角三角形,
∴AG=EG=x,
∵AG+BG=AB,
∴x+x=6,
解得,x=33,
∴BE66,
综上,BE=12﹣6或66.
故答案为:12﹣6或66.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于点D和E,作直线DE交AB于点F,交AC于点G,连接CF,以点C为圆心,以CF的长为半径画弧,交AC于点H.若∠A=30°,BC=2,则AH的长是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),交y轴于C(0,2);
(1)求二次函数的解析式;
(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.
(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.
(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.
探究结论:小明同学对以上结论作了进一步研究.
(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为 .
(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.
(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论 .
拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于的长为半径在AD的两侧作弧,交于两点M、N;第二步,连结MN,分别交AB、AC于点E、F;第三步,连结DE、DF..若BD=6,AF=4,CD=3,则BE的长是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+6x﹣5与x轴交于A,B两点(点A在点B左边),与y轴交于点C.点P是抛物线上一个动点,过点P作x轴的垂线,垂足为点H,交直线BC于点E.
(1)求点A,B,C的坐标;
(2)连接CP,当CP平分∠OCB时,求点P的坐标;
(3)平面直角坐标系内是否存在点Q,使得以点P,E,B,Q为顶点的四边形为菱形?若存在,直接写出点Q的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某品牌太阳能热水器的侧面示意图.已知铁架水平横管平行于水平线AD,长为的真空管与水平线的夹角为37°,铁架的倾斜角为22°,铁架竖直管的长度为05 ,根据以上信息,请求出:
(1))真空管上端到水平线的距离;
(2)水平横管的长度(结果精确到0.1 )(参考数据:,,,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
频数频率分布表
成绩x(分) | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在 分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com