精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点PBA的延长线上,弦CDAB于点E,OE:EA=1:2,PA=6,POC=PCE.

(1)求证:PC是⊙O的切线;

(2)求⊙O的半径;

(3)求sinPCA的值.

【答案】(1)证明见解析;(2)半径r=3;(3)

【解析】

(1)由弦CDAB于点E,所以∠COE+OCE=90°,又∠POC=PCE,所以,∠PCE+OCE=90°,即可证明;

(2)由OE:EA=1:2,可设OE=k,EA=2k,则半径r=3k,易证COE∽△POC,所以,CO2=OEOP,代入即可求得;

(3)过AAHPC,垂足为H,由PCOCAHOC,得AH=2,在RtCOE中,解得CE=,在RtACE中,解得AC=,即可得出结论.

(1)∵弦CDAB于点E,

∴在RtCOE中∠COE+OCE=90°,

∵∠POC=PCE,

∴∠PCE+OCE=90°,即PCOC,

PC是⊙O的切线;

(2)OE:EA=1:2,PA=6,

∴可设OE=k,EA=2k,则半径r=3k,

RtCOP中,

CEPO垂足为E,

∴△COE∽△POC,

CO2=OEOP即(3k)2=k(3k+6),

解得k=0(舍去)或k=1,

∴半径r=3;

(3)过AAHPC,垂足为H,

PCOCAHOC,

,即,解得AH=2,

RtCOE中,由OC=3,OE=1,解得CE=

RtACE中,由CE=,AE=2,解得AC=

RtACH中,由AC=,AH=2,

sinPCA===

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+ca≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc0b2=4ac4a+2b+c03a+c0,其中正确的结论是________.(写出正确命题的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】亲爱的同学,下面我们来做一个猜颜色的游戏:一个不透明的小盒中,装有A、B、C三张除颜色以外完全相同的卡片,卡片A两面均为红,卡片B两面均为绿,卡片C一面为红,一面为绿.

(1)从小盒中任意抽出一张卡片放到桌面上,朝上一面恰好是绿色,请你猜猜,抽出哪张卡片的概率为0?

(2)若要你猜(1)中抽出的卡片朝下一面是什么颜色,猜哪种颜色正确率可能高一些?

请你列出表格,用概率的知识予以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个长为8分米宽为5分米高为7分米的长方体上截去一个长为6分米宽为5分米深为2分米的长方体后得到一个如图所示的几何体一只蚂蚁要从该几何体的顶点A处沿着几何体的表面到几何体上和A相对的顶点B处吃食物那么它需要爬行的最短路径的长是 分米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级开展征文活动,征文主题只能从爱国”“敬业”“诚信”“友善四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.

(1)求共抽取了多少名学生的征文;

(2)将上面的条形统计图补充完整;

(3)在扇形统计图中,选择爱国主题所对应的圆心角是多少;

(4)如果该校九年级共有1200名学生,请估计选择以友善为主题的九年级学生有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(8分)如图,在△ABC中,ADBCD,AE平分∠DAC,BAC=80°,B=60°,求∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.

(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;

(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;

3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当ABC为直角三角形时,写出点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线经过点A0),B0),且与y轴相交于点C

1求这条抛物线的表达式

2)求∠ACB的度数;

3设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在RtABC中,∠A=90°,AB=AC,点DE分别在边ABAC上,AD=AE,连接DC,点MPN分别为DEDCBC的中点.

(1)观察猜想

1中,线段PMPN的数量关系是 ,位置关系是

(2)探究证明

ADE绕点A逆时针方向旋转到图2的位置,连接MNBDCE,判断PMN的形状,并说明理由;

(3)拓展延伸

ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出PMN面积的最大值.

查看答案和解析>>

同步练习册答案