精英家教网 > 初中数学 > 题目详情

【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.

(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;

(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;

3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当ABC为直角三角形时,写出点B的坐标.

【答案】(1)反比例函数y=是闭区间[1,2018]上的“闭函数”(2)t=3(3)当ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,

【解析】分析: (1)由k>0可知反比例函数y=在闭区间[1,2016]上y随x的增大而减小,然后将x=1,x=2018别代入反比例解析式的解析式,从而可求得y的范围,于是可做出判断;
(2)先求得二次函数的对称轴为x=1,a=1>0,根据二次函数的性质可知y=x2-4x+k在闭区间[2,t]上y随x的增大而增大,然后将x=2,y=k-4,x=t,y=t2-4t+k分别代入二次函数的解析式,从而可求得k的值;
(3)根据勾股定理的逆定理,可得方程,根据解方程,可得答案.

详解:

(1)∵k=2018,

当1≤x≤2018时,y随x的增大而减小.

当x=1时,y=2018,x=2018时,y=1.

∴1≤y≤2108.

反比例函数y= 是闭区间[1,2018]上的“闭函数”.

(2)∵x=﹣=2,a=1>0,

二次函数y=x2﹣4x+k在闭区间[2,t]上y随x的增大而增大.

二次函数y=x2﹣2x﹣k是闭区间[2,t]上的“闭函数”,

当x=2时,y=k﹣4,x=t时,y=t2﹣4t+k.

解得k=6,t=3,t=﹣2,

因为t>2,

t=2舍去,

∴t=3.

(3)由二次函数的图象交y轴于C点,A为此二次函数图象的顶点,得

A(2,2),C(0,6)设B(1,t),

由勾股定理,得AC2=22+(2﹣6)2,AB2=(2﹣1)2+(2﹣t)2,BC2=12+(t﹣6)2

ABC=90°时,AB2+BC2=AC2,即

(2﹣1)2+(2﹣t)2+(t﹣6)2+1=22+(2﹣6)2

化简,得t2﹣8t+11=0,解得t=4+或t=4﹣

B(1,4+),(1,4﹣);

BAC=90°是,AB2+AC2=BC2

即(2﹣1)2+(2﹣t)2+22+(2﹣6)2=12+(t﹣6)2

化简,得8t=12,

解得t=

B(1,),

ACB=90°时,AC2+CB2=AB2

即22+(2﹣6)2+12+(t﹣6)2=(2﹣1)2+(2﹣t)2

化简,得2t=13,

解得t=

B(1,),

综上所述:当ABC为直角三角形时,点B的坐标(1,4+),(1,4﹣),(1,),(1,).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长为的菱形中,,连接对角线,以AC为边作第二个菱形ACC1D1,使∠D1AC60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC160°;…按此规律所作的第2019个菱形的边长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,点EF分别在BCCD上,三角形AEF是等边三角形,连接ACEFG,下列结论:①BE=DFAG=2GCBE+DF=EFSCEF=2SABE正确的有_____(只填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中,边上一点,上一点,,设

1)若,则____________________;若,则____________________

2)由此猜想的关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC ,分别以AB AC 为边在△ABC 的外部作等边三角形ABD和等边三角形ACE联结DC BE 试说明DCBE的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,……,移动2019次后,该点所对应的数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形中,,过点交对角线于点,连接,取的中点,连接.

1)请你根据题意补全图形;

2)若,则菱形的面积为 .(直接写出答案)

3)请用等式表示线段之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只蚂蚁从一点出发在一条直线上爬行,规定向右爬行的路程为正数,向左爬行的路程为负数,蚂蚁爬行的各段路程依次为(单位:厘米)-2-5+8-4+5.

(1)请你以1厘米为一个单位长度并将蚂蚁的出发点作为原点画出数轴,在数轴上表示出蚂蚁每次到达的位置(依次用表示).

(2)直接写出蚂蚁最远离出发点多少厘米?

(3)若蚂蚁爬行的速度不变,爬完这些路程共用时6分钟,通过计算说明蚂蚁爬行的速度是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和点G,H.

(1)求证:△PHC≌△CFP;

(2)证明四边形 PEDH和四边形 PGBF都是矩形,并直接写出它们面积之间的关系。

查看答案和解析>>

同步练习册答案