如图,在平面直角坐标系xOy中,一次函数
(
为常数)的图象与x轴交于点A(
,0),与y轴交于点C.以直线x=1为对称轴的抛物线
(
为常数,且
≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求
的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于
,
两点,试探究
是否为定值,并写出探究过程.
![]()
(1)m=
,![]()
(2)
.![]()
(3)定值1
【解析】(1)首先求得m的值和直线的解析式,根据抛物线对称性得到B点坐标,根据A、B点坐标利用交点式求得抛物线的解析式;
(2)存在点E使得以A、C、E、F为顶点的四边形是平行四边形.过点E作EG⊥x轴于点G,构造全等三角形,利用全等三角形和平行四边形的性质求得E点坐标和平行四边形的面积.注意:符合要求的E点有两个,不要漏解;
(3)本问较为复杂,分几个步骤解决:
第1步:确定何时△ACP的周长最小.利用轴对称的性质和两点之间线段最短的原理解决;
第2步:确定P点坐标P(1,3),从而直线M1M2的解析式可以表示为y=kx+3-k;
第3步:利用根与系数关系求得M1、M2两点坐标间的关系,得到x1+x2=2-4k,x1x2=-4k-3.这一步是为了后续的复杂计算做准备;
第4步:利用两点间的距离公式,分别求得线段M1M2、M1P和M2P的长度,相互比较即可得到结论:M1P•M2P/M1M2 =1为定值.这一步涉及大量的运算,注意不要出错,否则难以得出最后的结论
科目:初中数学 来源: 题型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com