精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,CD切⊙O于点CAD交⊙O于点EAC平分∠BAD,连接BE

1)求证:CDED

2)若CD=4AE=2,求⊙O的半径.

【答案】(Ⅰ)见解析;(Ⅱ)⊙O的半径为

【解析】

(Ⅰ)连接OC,根据CD切⊙O于点C得出OCDC,由OA=OC,得出∠OAC=OCA,则可证明∠OCA=DAC,证得OCAD,根据平行线的性质即可证明;
(Ⅱ)根据圆周角定理证得∠AEB=90°,根据垂径定理证得EF=BF,进而证得四边形EFCD是矩形,从而证得BE=8,然后根据勾股定理求得AB,即可求得半径.

解:(Ⅰ)证明:连接OC,交BEF,由DC是切线得OCDC

又∵OAOC

∴∠OAC=∠OCA

AC平分∠BAD

∴∠DAC=∠OAC

∴∠OCA=∠DAC

OCAD

∴∠D=∠OCD90°

CDED

(Ⅱ)∵AB是⊙O的直径,∴∠AEB90°

∵∠D90°,∴∠AEB=∠D

BECD

OCCD,∴OCBE

EFBF

OCED

∴四边形EFCD是矩形,

EFCD4,∴BE8

AE2

AB2

∴⊙O的半径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数y=的图象相交于B、C两点.若AB=BC,则k1k2的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是矩形ABCD内一点,APBP于点P,CEBP于点E,BP=EC.

(1)请判断四边形ABCD是否是正方形?若是,写出证明过程;若不是,说明理由;

(2)延长EC到点F,使CF=BE,连接PFBC的延长线于点G,求∠BGP的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以点为圆心,以任意长为半径作弧,分别交于点M,N,再分别以M,N为圆心,以大于的长为半径作弧,两弧交于点,作射线于点,则的长是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了你最喜欢的沟通方式调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

1)这次统计共抽查了  名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为   

2)将条形统计图补充完整;

3)该校共有1500名学生,请估计该校最喜欢用微信进行沟通的学生有多少名?

4)某天甲、乙两名同学都想从微信“QQ”电话三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,经过正方形ABCD的顶点A在其外侧作直线AP,点B关于直线AP的对称点为E,连接BEDE,其中DE交直线AP于点F

1)依题意补全图1

2)若∠PAB30°,求∠ADF的度数.

3)如图,若45°<∠PAB90°,用等式表示线段ABFEFD之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的弦,半径OEABPAB的延长线上一点,PC⊙O相切于点CCEAB交于点F

(1)求证:PCPF

(2)连接OBBC,若OBPCBC3tanP,求FB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的快速发展,互联网+渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:

收费方式

月使用费/元

包时上网时间/h

超时费/(元/min)

A

7

25

0.01

B

m

n

0.01

设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB

(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n=

(2)写出yA与x之间的函数关系式.

(3)选择哪种方式上网学习合算,为什么?

查看答案和解析>>

同步练习册答案