(1 )证明:在△ABF 和△ADO 中,
∵四边形ABCD 是正方形,
∴AB=AD ,∠BAF= ∠DAO=90 °.
又∵∠ABF= ∠ADO ,
∴△ABF ≌△ADO ,
∴BF=DO ;
(2 )解:由(1 ),有△ABF ≌△ADO ,
∵AO=AF=m .
∴点F (m ,m ).
∵G 是△BDO 的外心,
∴点G 在DO 的垂直平分线上.
∴点B 也在DO 的垂直平分线上.
∴△DBO 为等腰三角形,
∵AB=AD ,
在Rt △BAD 中,由勾股定理得:
设经过B ,F ,O 三点的抛物线的解析表达式为y=ax2+bx+c (a ≠0 ).
∵抛物线过点O (0 ,0 ),
∴c=0 .
∴y=ax2+bx . ①
把点B
的坐标带入①中,
∴抛物线的解析表达式为
(3 )解:假定在抛物线上存在一点P ,使点P 关于直线BE 的对称点P' 在x 轴上.
∵BE 是∠OBD 的平分线,
∴x 轴上的点P' 关于直线BE 的对称点P 必在直线BD 上,
即点P 是抛物线与直线BD 的交点.
设直线BD 的解析表达式为y=kx+b ,并设直线BD 与y 轴交于点Q ,则由△BOQ 是等腰直角三角形.
∴|OQ|=|OB| .
∴直线BD 的解析表达式为
.
∴在抛物线上存在点P1 (
,0 ),P2 (-2 ,
),它们关于直线BE 的对称点都在x 轴上.
科目:初中数学 来源: 题型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com