【题目】在平面直角坐标系中,为原点,点,点.以为一边作等边三角形,点在第二象限.
(Ⅰ)如图①,求点的坐标;
(Ⅱ)将绕点顺时针旋转得,点旋转后的对应点为.
①如图②,当旋转角为30°时,与分别交于点与交于点,求与公共部分面积的值;
②若为线段的中点,求长的取值范围(直接写出结果即可).
【答案】(Ⅰ)点的坐标为;(Ⅱ)①;②.
【解析】
(Ⅰ)利用的坐标,求解 利用等边三角形的性质可得答案;
(Ⅱ) ①过点作于点,分别求解,的面积,利用,可得答案;②如图,在以为圆心,为半径的圆上运动,延长至,使 则设,得到:所以:表示点与之间的距离,连接交圆于,当在的下方,最短,反之最长,从而可得答案.
解:(Ⅰ),
.
在中,,
.
.
是等边三角形,
.
,
∴点的坐标为.
(Ⅱ)①过点作于点,
∵将顺时针旋转30°,得,
.
.
.
,
.
在中,,
.
.
,
.
在中,,
.
在中,,
.
.
.
②如图,在以为圆心,为半径的圆上运动,
延长至,使 则
设,则由勾股定理得:
为的中点,
所以:表示点与之间的距离,连接交圆于,
当在的下方,最短,反之最长,
设为
解得:
为:
解得: 或
当在的下方时,坐标为:
同理:当在的上方时,
科目:初中数学 来源: 题型:
【题目】如图,在扇形AOB中,∠AOB=90°,半径OA=4.将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点C处,折痕交OA于点D,则图中阴影部分的面积为_______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为6的菱形ABCD中,对角线AC,BD交点与点O,点P是△ADO的重心.
(1)当菱形ABCD是正方形时,则PA=________,PD=__________,PO=_________.
(2)线段PA,PD,PO中是否存在长度保持不变的线段,若存在,请求出该线段的长度,若不存在,请说明理由.
(3)求线段PD,DO满足的等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是 度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形边长为1的网格中,点均在格点上,交于点.
(Ⅰ)的值为_____________;
(Ⅱ)若点在线段上,当取得最小值时,请在如图所示的网格中用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公共汽车线路每天运营毛利润(万元)与乘客量(万人)成一次函数关系,其图象如图所示.目前通过监测发现每天平均乘客量为0.6万人次,由于运营成本较高,这条线路处于亏损状态.(毛利润=票价总收入一运营成本)
(1)求该线路公共汽车的单程票价和每天运营成本分别为多少元.
(2)公交公司为了扭亏,若要使每天运营毛利润在0.2~0.4万元之间(包括0.2和0.4),求平均每天的乘客量的范围.
(3)据实际情况,发现该线路乘客量稳定,公交公司决定适当提高票价,当单程票价每提高1元时,每天平均乘客量相应减少0.05万人次,设这条线路的单程票价提高元().当为何值时,该线路每天运营总利润最大,并求出最大的总利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=10.
(1)求AB的长;
(2)求平行四边形ABCD的面积;
(3)求cos∠AEB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面中,给定线段AB和C,P两点,点C与点P分布在线段AB的异侧,满足,则称点C与点P是关于线段AB的关联点.在平面直角坐标系xOy中,已知点,,.
(1)在,,三个点中,点O与点P是关于线段AB的关联点的是________;
(2)若点C与点P是关于线段OA的关联点,求点P的纵坐标m的取值范围;
(3)直线与x轴,y轴分别交与点E,F,若在线段AB上存在点P与点O是关于线段EF的关联点,直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴的一个交点坐标为(0,3),其部分图象如图所示,下列结论:①abc<0;②4a+c>0;③方程ax2+bx+c=3的两个根是x1=0,x2=2;④方程ax2+bx+c=0有一个实根大于2;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com