精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,为原点,点,点.以为一边作等边三角形,点在第二象限.

()如图①,求点的坐标;

()绕点顺时针旋转得,点旋转后的对应点为

①如图②,当旋转角为30°时,分别交于点交于点,求公共部分面积的值;

②若为线段的中点,求长的取值范围(直接写出结果即可)

【答案】()的坐标为();②

【解析】

()利用的坐标,求解 利用等边三角形的性质可得答案;

() ①过点于点,分别求解,的面积,利用,可得答案;②如图,在以为圆心,为半径的圆上运动,延长,使 ,得到:所以:表示点之间的距离,连接交圆,的下方,最短,反之最长,从而可得答案.

解:()

中,

是等边三角形,

∴点的坐标为

()①过点于点

∵将顺时针旋转30°,得

中,

中,

中,

②如图,在以为圆心,为半径的圆上运动,

延长,使

,则由勾股定理得:

的中点,

所以:表示点之间的距离,连接交圆,

的下方,最短,反之最长,

解得:

为:

解得:

的下方时,坐标为:

同理:当的上方时,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在扇形AOB中,∠AOB=90°,半径OA=4.将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点C处,折痕交OA于点D,则图中阴影部分的面积为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6的菱形ABCD中,对角线ACBD交点与点O,点P是△ADO的重心.

1)当菱形ABCD是正方形时,则PA=________,PD=__________,PO=_________.

2)线段PAPDPO中是否存在长度保持不变的线段,若存在,请求出该线段的长度,若不存在,请说明理由.

3)求线段PDDO满足的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)

根据所给信息,解答以下问题:

(1)在扇形统计图中,C对应的扇形的圆心角是   度;

(2)补全条形统计图;

(3)所抽取学生的足球运球测试成绩的中位数会落在   等级;

(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形边长为1的网格中,点均在格点上,交于点

(Ⅰ)的值为_____________

(Ⅱ)若点在线段上,当取得最小值时,请在如图所示的网格中用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公共汽车线路每天运营毛利润(万元)与乘客量(万人)成一次函数关系,其图象如图所示.目前通过监测发现每天平均乘客量为0.6万人次,由于运营成本较高,这条线路处于亏损状态.(毛利润=票价总收入一运营成本)

1)求该线路公共汽车的单程票价和每天运营成本分别为多少元.

2)公交公司为了扭亏,若要使每天运营毛利润在0.2~0.4万元之间(包括0.20.4),求平均每天的乘客量的范围.

3)据实际情况,发现该线路乘客量稳定,公交公司决定适当提高票价,当单程票价每提高1元时,每天平均乘客量相应减少0.05万人次,设这条线路的单程票价提高元(.为何值时,该线路每天运营总利润最大,并求出最大的总利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,EAD边上一点,BE平分ABC,连接CE,已知DE6CE8AE10

1)求AB的长;

2)求平行四边形ABCD的面积;

3)求cos∠AEB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面中,给定线段ABCP两点,点C与点P分布在线段AB的异侧,满足,则称点C与点P是关于线段AB的关联点.在平面直角坐标系xOy中,已知点

1)在三个点中,点O与点P是关于线段AB的关联点的是________

2)若点C与点P是关于线段OA的关联点,求点P的纵坐标m的取值范围;

3)直线x轴,y轴分别交与点EF,若在线段AB上存在点P与点O是关于线段EF的关联点,直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线yax2+bx+c(a0)的对称轴为直线x1,与y轴的一个交点坐标为(03),其部分图象如图所示,下列结论:①abc0;②4a+c0;③方程ax2+bx+c3的两个根是x10x22;④方程ax2+bx+c0有一个实根大于2;⑤当x0时,yx增大而增大.其中结论正确的个数是(

A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案