【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.
(1)求证:BD=CD.
(2)若弧DE=50°,求∠C的度数.
(3)过点D作DF⊥AB于点F,若BC=8,AF=3BF,求弧BD的长.
【答案】(1)详见解析;(2)65°;(3).
【解析】
(1)连接AD,利用圆周角定理推知AD⊥BD,然后由等腰三角形的性质证得结论;
(2)根据已知条件得到∠EOD=50°,结合圆周角定理求得∠DAC=25°,所以根据三角形内角和定理求得∠ABD的度数,则∠C=∠ABD,得解;
(3)设半径OD=x.则AB=2x.由AF=3BF可得AF=AB=x,BF=AB=x,根据射影定理知:BD2=BFAB,据此列出方程求得x的值,最后代入弧长公式求解.
(1)证明:如图,连接AD.
∵AB是圆O的直径,
∴AD⊥BD.
又∵AB=AC,
∴BD=CD.
(2)解:∵弧DE=50°,
∴∠EOD=50°.
∴∠DAE=∠DOE=25°.
∵由(1)知,AD⊥BD,则∠ADB=90°,
∴∠ABD=90°﹣25°=65°.
∵AB=AC,
∴∠C=∠ABD=65°.
(3)∵BC=8,BD=CD,
∴BD=4.
设半径OD=x.则AB=2x.
由AF=3BF可得AF=AB=x,BF=AB=x,
∵AD⊥BD,DF⊥AB,
∴BD2=BFAB,即42=x2x.
解得x=4.
∴OB=OD=BD=4,
∴△OBD是等边三角形,
∴∠BOD=60°.
∴弧BD的长是:=.
科目:初中数学 来源: 题型:
【题目】如图,每次旋转都以图中的A、B、C、D、E、F中不同的点为旋转中心,旋转角度为k90°(k为整数),现在要将左边的阴影四边形正好通过n次旋转得到右边的阴影四边形,则n的值可以是( )
A.n=1可以,n=2,3不可B.n=2可以,n=1,3不可
C.n=1,2可以,n=3不可D.n=1,2,3均可
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整:
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 |
| ﹣2 | ﹣1 | 0 | 1 | 2 |
| 3 | … |
y | … | 3 |
| m | ﹣1 | 0 | ﹣1 | 0 |
| 3 | … |
其中,m= .
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)探究函数图象发现:
①函数图象与x轴有 个交点,所以对应的方程x2﹣2|x|=0有 个实数根;
②方程x2﹣2|x|=有 个实数根;
③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.
(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.
(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?( 精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求二次函数的图象如图所示,其对称轴为直线,与轴的交点为、,其中,有下列结论:①;②;③;④;⑤;其中,正确的结论有( )
A.5B.4C.3D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面坐标系xOy中,点A的坐标为(1,0),点P的横坐标为2,将点A绕点P旋转,使它的对应点B恰好落在x轴上(不与A点重合);再将点B绕点O逆时针旋转90°得到点C.
(1)直接写出点B和点C的坐标;
(2)求经过A,B,C三点的抛物线的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com