【题目】某报社为了了解市民“获取新闻的最主要途径”,开展了一次抽样调查,根据调查结果绘制了如下三种不完整的统计图表.
请根据图表信息解答下列问题:
(1)统计表中的= ,= ,并请补全条形统计图;
(2)扇形统计图中“”所对应的圆心角的度数是 ;
(3)若该市约有100万人,请你估计其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数.
【答案】(1)400,100;补图见解析;(2)36°;(3)68万人.
【解析】
(1)由C组的人数除以占的百分比,得出调查总人数,进而确定出B组与D组的人数,得到m与n的值,从而补全条形统计图;
(2)由D组所占的百分比,乘以360°即可得到结果;
(3)用该市总人数乘以A、B两组所占百分比的和即可得到结论.
(1)调查总人数为:140÷14%=1000(人),
m=1000×40%=400,
n=1000-280-400-140-80=100.
条形图补充如图所示:
(2)扇形统计图中“D”所对应的圆心角的度数是×360°=36°;
故答案为:36°;
(3)×100=68(万人),
答:估计其中将“电脑上网”和“手机上网”作为“获取新闻的最主要途径”的总人数为68万人.
科目:初中数学 来源: 题型:
【题目】数轴是学习初中数学的- -个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点、点表示的数为,则两点之间的距离,若,则可简化为;线段的中点表示的数为如图,已知数轴上有两点,分别表示的数为,点以每秒个单位长度的速度沿数轴向右匀速运动,点以每秒个单位长度向左匀速运动,设运动时间为秒.
(1)运动开始前,两点的距离为多少个单位长度;线段的中点所表示的数为?
(2)点运动秒后所在位置的点表示的数为 ;点 运动秒后所在位置的点表示的数为 . (用含的式子表示
(3)它们按上述方式运动,两点经过多少秒会相距个单位长度?
(4)若按上述方式运动, 两点经过多少秒,线段的中点与原点重合?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx+2 与x轴交于A,B两点,与y轴交于点C,AB=4.矩形OADC的边CD=1,延长DC交抛物线于点E.
(1)求抛物线的表达式;
(2)点P是直线EO 上方抛物线上的一个动点,作PH⊥EO,垂足为H,求PH的最大值;
(3)点M在抛物线上,点N在抛物线的对称轴上,若四边形ACMN是平行四边形,求点M、N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、 B、“欢乐跑”。小明参加了该项赛事的志愿者服务工作, 组委会随机将志愿者分配到两个项目组.
(1)小明被分配到“半程马拉松”项目组的概率为________.
(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:
调查总人数 | 20 | 50 | 100 | 200 | 500 |
参加“半程马拉松”人数 | 15 | 33 | 72 | 139 | 356 |
参加“半程马拉松”频率 | 0.750 | 0.660 | 0.720 | 0.695 | 0.712 |
①请估算本次赛事参加“半程马拉松”人数的概率为_______.(精确到0.1)
②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为 ( )
A. 3 B. C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,给出如下定义:对于点P(m,n),若点Q(2﹣m,n﹣1),则称点Q为点P的“δ点”.例如:点(﹣2,5)的“δ点”坐标为(4,4).
(1)某点的“δ点”的坐标是(﹣1,3),则这个点的坐标为 ;
(2)若点A的坐标是(2﹣m,n﹣1),点A的“δ点”为A1点,点A1的“δ点”为A2点,点A2的“δ点”为A3点,…,点A1的坐标是 ;点A2015的坐标是 ;
(3)函数y=﹣x2+2x(x≤1)的图象为G,图象G上所有点的“δ点”构成图象H,图象G与图象H的组合图形记为“图形Ю”,当点(p,q)在“图形Ю”上移动时,若k≤p≤1+2,﹣8≤q≤1,求k的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形 ABCD 的边长为1,其面积为 S1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为 S2,…,按此规律继续下去,则 S9的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, , AC=BC=3, 将△ABC折叠,使点A落在BC 边上的点D处,EF为折痕,若AE=2,则的值为_____________.
【答案】
【解析】分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,
在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由锐角三角函数求得, ;
设AF=DF=x,则FG= ,在Rt△DFG中,根据勾股定理得方程=,解得,从而求得.的值
详解:
如图所示,过点D作DGAB于点G.
根据折叠性质,可知△AEF△DEF,
∴AE=DE=2,AF=DF,CE=AC-AE=1,
在Rt△DCE中,由勾股定理得,
∴DB=;
在Rt△ABC中,由勾股定理得;
在Rt△DGB中, , ;
设AF=DF=x,得FG=AB-AF-GB=,
在Rt△DFG中, ,
即=,
解得,
∴==.
故答案为: .
点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题.
【题型】填空题
【结束】
18
【题目】规定:[x]表示不大于x 的最整数,(x) 表示不小于x的最小整数,[x) 表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2,则下列说法正确的是__________(写出所有正确说法).
①当x=1.7时,[x]+(x)+[x)=6;
②当x=-2.1时,[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解为1<x<1.5;
④当-1<x<1时, 函数y=[x]+(x)+x 的图像y=4x 的图像有两个交点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.
(1)若点G在点B的右边.试探索:EHBG的值是否为定值,若是,请求出定值;若不是,请说明理由.
(2)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com