精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形的两个顶点在反比例函数的图象上,点轴上,且两点关于原点对称,轴于点,已知点的坐标是(23).

1)求的值;

2)若的面积为2,求点的坐标.

【答案】(1)6 (2)(-40)

【解析】

1)将点的坐标是(23)代入反比例函数解析式即可得出k的值;

2)设点P的坐标为(0m),直线AP的解析式为,依据三角形面积得出m的值,再根据AP的坐标求出直线AP的解析式,即可求出点D的坐标.

解:(1)∵点A(23)在反比例函数的图象上,

2)设点P的坐标为(0m),直线AP的解析式为

依题意得

解得,即点P的坐标为(02).

解得,因此直线AP的解析式为

∵点D在直线AP上,∴,解得

D点的坐标为(-40)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于AC两点,与直线yx1交于AB两点,直线AB与抛物线的对称轴交于点E

(1)求抛物线的解板式.

(2)P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.

(3)在平面直角坐标系中,以点BECD为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°,将ABC绕点A顺时针旋转90°后得到AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′32°,则∠B的大小是(

A.32°B.64°C.77°D.87°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABCD中,CD=2AD,BEAD于点E,FDC的中点,连结EF、BF,下列结论:①∠ABC=2ABF;EF=BF;S四边形DEBC=2SEFB④∠CFE=3DEF,其中正确结论的个数共有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AOBC边上的中线,ABAC的“极化值”就等于AO2BO2的值,可记为ABAC=AO2BO2

1)在图1中,若∠BAC=90°,AB=8AC=6AOBC边上的中线,则ABAC= OCOA=

2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求ABACBABC的值;

3)如图3,在△ABC中,AB=ACAOBC边上的中线,点NAO上,且ON=AO.已知ABAC=14BNBA=10,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB6AC4,∠A30°,线段AB上有一个动点P,过点PPDBC,交ACD,连接PC,则△PCD的最大面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线的顶点坐标为(01)且经过点A12),直线y3x4经过点Bn),与y轴交点为C

1)求抛物线的解析式及n的值;

2)将直线BC绕原点O逆时针旋转45°,求旋转后的直线的解析式;

3)如图2将抛物线绕原点O顺时针旋转45°得到新曲线,新曲线与直线BC交于点MN,点M在点N的上方,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图位置,继续绕右下角的顶点按顺时针方向旋转90°至图位置,以此类推,这样连续旋转2017次.若AB=4AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )

A. 2017π B. 2034π C. 3024π D. 3026π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,矩形ABCD中,过对角线BD中点O的直线分别交ABCD边于点EF

1)求证:四边形BEDF是平行四边形;

2)只需添加一个条件,即______,可使四边形BEDF为菱形.

查看答案和解析>>

同步练习册答案