精英家教网 > 初中数学 > 题目详情

【题目】我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AOBC边上的中线,ABAC的“极化值”就等于AO2BO2的值,可记为ABAC=AO2BO2

1)在图1中,若∠BAC=90°,AB=8AC=6AOBC边上的中线,则ABAC= OCOA=

2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求ABACBABC的值;

3)如图3,在△ABC中,AB=ACAOBC边上的中线,点NAO上,且ON=AO.已知ABAC=14BNBA=10,求△ABC的面积.

【答案】107;(2)﹣824;(3

【解析】试题分析:(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;

②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;

2)①先利用含30°的直角三角形的性质求出AO=2OB=,再用新定义即可得出结论;

②先构造直角三角形求出BEAE,再用勾股定理求出BD,最后用新定义即可得出结论;

3)先构造直角三角形,表述出OABD2,最后用新定义建立方程组求解即可得出结论.

试题解析:(1)①∵∠BAC=90°,AB=8AC=6,∴BC=10

∵点OBC的中点,∴OA=OB=OC=BC=5,∴ABAC=AO2BO2=2525=0

②如图1,取AC的中点D,连接OD,∴CD=AC=3

OA=OC=5,∴ODAC

RtCOD中,OD==4,∴OCOA=OD2CD2=169=7

故答案为:07

2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AOBC

在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,

RtAOB中,AB=4,∠ABC=30°,∴AO=2OB=

ABAC=AO2BO2=412=﹣8

②取AC的中点D,连接BD,∴AD=CD=AC=2,过点BBEACCA的延长线于E,在RtABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,

AB=4,∴AE=2BE=,∴DE=AD+AE=4

RtBED中,根据勾股定理得,BD= ==

BABC=BD2CD2=24

3)如图3,设ON=xOB=OC=y,∴BC=2yOA=3x

ABAC=14,∴OA2OB2=14,∴9x2y2=14①,

AN的中点D,连接BD,∴AD=DB=AN=×OA=ON=x,∴OD=ON+DN=2x

RtBOD中,BD2=OB2+OD2=y2+4x2,∵BNBA=10

BD2DN2=10,∴y2+4x2x2=10,∴3x2+y2=10

联立①②得: (舍),∴BC=4OA=,∴SABC=BC×AO=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠BAC=90°,ADBC,垂足为D.

(1)求作∠ABC的平分线,分别交AD,ACP,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)

(2)证明AP=AQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于点E,交BA的延长线于点F

1)求证:APD≌△CPD

2)求证:APE∽△FPA

3)若PE2EF6,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.

销售量y(千克)

34.8

32

29.6

28

售价x(元/千克)

22.6

24

25.2

26

(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.

(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,tanACB=2,D在△ABC内部,且AD=CD,ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形的两个顶点在反比例函数的图象上,点轴上,且两点关于原点对称,轴于点,已知点的坐标是(23).

1)求的值;

2)若的面积为2,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举办园博会知识竞赛,打算购买AB两种奖品.如果购买A奖品10件、B奖品5件,共需120元;如果购买A奖品5件、B奖品10件,共需90元.

1AB两种奖品每件各多少元?

2)若购买AB奖品共100件,总费用不超过600元,则A奖品最多购买多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导光盘行动,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

1)这次被调查的同学共有   名;

2)补全条形统计图;

3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;

4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GEBCGFCD

1)①求证:四边形CEGF是正方形;②推断:的值为  

2)将正方形CEGF绕点C顺时针方向旋转α角(α45°),如图(2)所示,试探究线段AGBE之间的数量关系;

3)正方形CEGF在旋转过程中,当BEF三点在一条直线上时,如图(3)所示,延长CGAD于点H.若AG6GH2,求正方形CEGF和正方形ABCD的边长.

查看答案和解析>>

同步练习册答案