精英家教网 > 初中数学 > 题目详情

在直角坐标系中,∠ABC=∠BDE=90°,BC=DE,AC=BE,M、N分别是AB、BD的中点,连接MN交CE于点K.

(1)如图1,已知A点的坐标为(3,0),C点的坐标为(-4,2),求D点的坐标.
(2)如图2,当C、B、D共线,AB=2BC时,探究CK与EK之间的数量关系,并证明.
(3)如图3,当C、B、D不共线,AB≠BC时,(2)中的结论是否成立?若成立,请证明;若不成立,请说明理由.

解(1)如图1,在Rt△BDE和Rt△ABC中,

∴Rt△BDE≌Rt△ABC,
∴BD=AB,
∵C(-4,2),∠ABC=90°,
∴B(-4,0).
∵A(3,0),
∴AB=7,
∴BD=7
D(-4,-7);
(2)如图2,CK=EK
理由:连EM、CN,
∵AB=2BC,AB=BD,
∴BD=2BC,
∵M、N分别是AB、BD的中点,
∴AB=2BM,BD=2BN=2ND,
∴BC=BM=BN=DN,
∵DE=BC,
∴DE=DN.
∵∠ABC=∠BDE=90°,
∴∠DEN=∠DNE=∠BNM=∠BMN=45°,
∴∠MNE=180°-45°-45°=90°,
在△MBN和△NDE中,

∴△MBN≌△NDE(SAS),
∴MN=EN,
∴△MNE是等腰直角三角形,
∴∠NME=45°,
∴∠BME=90°,
∴四边形BDEM是矩形,
∴EM=DB,BD∥EM,
∴EM=NC.∠CEM=∠NCE,∠NME=∠MNC,
在△EMK和△CNK中,

∴△EMK≌△CNK,
∴CK=EK.
(3)如图3,MN交BE、AC于F、G,过E、C作MN的垂线,垂足为Q、P,连结CM、EN,
∴∠EQN=∠EQK=∠CPM=90°.
∵AB=BD,M、N是AB、BD的中点,
∴DN=BN=BM=AM,
∴∠2=∠BMN,
∵∠1=∠BMN,
∴∠2=∠1.
在△EDN和△CBM中

∴△EDN≌△CBM(SAS),
∴EN=CM.
在△BNE和△AMC中

∴△BNE≌△AMC(SSS),
∴∠7=∠8,∠ENB=∠CMA,
∴∠ENB-∠2=∠CMA-∠1,
即∠3=∠4.
在△EQN和△CPM中,

∴△EQN≌△CPM(AAS),
∴EQ=CP.
在△EQK和△CPK中,

∴△EQK≌△CPK(AAS),
∴EK=CK.

分析:(1)证明△BDE≌△ABC,可得BD=AB,根据点M是AB的中点可求出BM的长度,继而可得点D的坐标;
(2)连接CM、BN,由已知易证得△ABC≌△BDE,可得到AB=BD;再通过证明△BCM≌△DEN,得CN=NE;接下来易证得△CMK≌△ENK,即可得CK=EK.
(3)过C、E分别作直线MK的垂线段,垂足分别为P、Q,首先证明△CMP≌△ENQ,可得PC=QE,然后易证明△CPQ≌△EQK,即得CK=EK.
点评:本题是一道综合型很强的试题,考查了全等三角形的判定及性质的运用,线段中点的运用,等腰直角三角形的性质的运用,点的坐标的运用,解答时灵活运用全等三角形的性质制造三角形全等是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标系中有三点A(0,1),B(1,3),C(2,6);已知直线y=ax+b上横坐标为0、1、2的点分别为D、E、F.试求a,b的值使得AD2+BE2+CF2达到最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,某三角形三个顶点的横坐标不变,纵坐标都增加2个单位,则所得三角形与原三角形相比(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,将坐标为(5,6),(1,2),(3,2),(3,0),(7,0),(7,2),(9,2),(5,6)的点用线段依此连接起来形成一个图案.
(1)纵坐标保持不变,横坐标分别减去3呢,与原图形相比,所得图形有什么变化?
(2)横坐标保持不变,纵坐标分别乘以-1,与原图形相比,所得图形有什么变化?
(3)横坐标加上2,纵坐标减去3呢,与原图形相比,所得图形有什么变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标;
(2)求出S△ABC
(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化后的图形,并判断线段AB和线段A′B′的关系.

查看答案和解析>>

同步练习册答案