精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,

得: ,解得:

∴抛物线的解析式为y=x2﹣4x+3.


(2)

解:设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,

把点点B(3,0)代入y=kx+3中,

得:0=3k+3,解得:k=﹣1,

∴直线BC的解析式为y=﹣x+3.

∵MN∥y轴,

∴点N的坐标为(m,﹣m+3).

∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,

∴抛物线的对称轴为x=2,

∴点(1,0)在抛物线的图象上,

∴1<m<3.

∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣ +

∴当m= 时,线段MN取最大值,最大值为


(3)

解:假设存在.设点P的坐标为(2,n).

当m= 时,点N的坐标为( ),

∴PB= = ,PN= ,BN= =

△PBN为等腰三角形分三种情况:

①当PB=PN时,即 =

解得:n=

此时点P的坐标为(2, );

②当PB=BN时,即 =

解得:n=±

此时点P的坐标为(2,﹣ )或(2, );

③当PN=BN时,即 =

解得:n=

此时点P的坐标为(2, )或(2, ).

综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点的坐标为(2, )、(2,﹣ )、(2, )、(2, )或(2, ).


【解析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;
(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;
(3)假设存在,设出点P的坐标为(2,n),结合(2)的结论可求出点N的坐标,结合点N、B的坐标利用两点间的距离公式求出线段PN、PB、BN的长度,根据等腰三角形的性质分类讨论即可求出n值,从而得出点P的坐标.
【考点精析】掌握二次函数的性质和两点间的距离是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;同轴两点求距离,大减小数就为之.与轴等距两个点,间距求法亦如此.平面任意两个点,横纵标差先求值.差方相加开平方,距离公式要牢记.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是(  )
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是(  )
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 , 它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2 , 交x轴于A2;将C2绕A2旋转180°得到C3 , 交x轴于A3;…如此进行下去,直至得到C6 , 若点P(11,m)在第6段抛物线C6上,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为(  )

A.-
B.-
C.-3
D.-6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).

(1)分别写出点A经1次,2次斜平移后得到的点的坐标.
(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.
①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.
②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系xoy中,直线的参数方程为 (t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为
(1)求曲线C的直角坐标方程,并指出其表示何种曲线;
(2)设直线l与曲线C交于A,B两点,若点P的直角坐标为(1,0),试求当 时,|PA|+|PB|的值.

查看答案和解析>>

同步练习册答案