分析 (1)由平行四边形的性质得出AD∥BC,AB=DC,进而证得∠DAE=∠AEB,证出$\widehat{DE}$=$\widehat{AB}$,即可得出DE=DC;
(2)作直径DF,连接EF,则∠EFD=∠EAD,证出∠EFD=∠CDE,再由DF是⊙O的直径,得出∠DEF=90°,得出∠FDC=90°,即可得出结论.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB=DC,
∴∠DAE=∠AEB.
∴$\widehat{DE}$=$\widehat{AB}$,
∴AB=DE,
∴DE=DC;
(2)解:
如图所示:作直径DF,连接EF.
则∠EFD=∠EAD,
∵∠CDE=∠DAE,
∴∠EFD=∠CDE.
∵DF是⊙O的直径,
∴∠DEF=90°,
∴∠EFD+∠FDE=90°,
∴∠CDE+∠FDE=90°
∴∠FDC=90°.
∴直线DC是⊙O的切线.
点评 本题考查了切线的判定、平行四边形的性质、圆周角定理;熟练掌握切线的判定方法,并能进行有关推理计算是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | n | B. | n(n-1) | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{n(n-1)}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 6或-4 | B. | -6或4 | C. | 1+$\sqrt{41}$或1-$\sqrt{41}$ | D. | 5或-4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com