精英家教网 > 初中数学 > 题目详情

【题目】二次函数yax2+bx+c的图象如图所示,以下结论:①abc0;②4acb2;③2a+b0;④其顶点坐标为(,﹣2);⑤当x时,yx的增大而减小;⑥a+b+c0中,其中正确的有( )

A. 2B. 3C. 4D. 5

【答案】C

【解析】

根据二次函数的性质求解即可.

由图像可知,a0c0

由对称轴可知,-0

b0

abc0

正确

由图像可知,△>0

4ac

正确

∵抛物线与x轴的交点为(-1,0),(2,0

∴对称轴x=

-1

2a+b0正确

正确;

抛物线过点(-1,0),(2,0)(0-2

求出抛物线方程为y=x2-x-2

由图像可知顶点坐标为(-)

不正确;

由图像可知当x时,yx的增大而减小

正确

由图像可知,当x=1,y0

a+b+c0

错误

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

【答案】(1)BF=AC,理由见解析;2NE=AC,理由见解析.

【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

试题解析:

1BF=AC,理由是:

如图1ADBCBEAC

∴∠ADB=AEF=90°

∵∠ABC=45°

∴△ABD是等腰直角三角形,

AD=BD

∵∠AFE=BFD

∴∠DAC=EBC

ADCBDF中,

∴△ADC≌△BDFAAS),

BF=AC

2NE=AC,理由是:

如图2,由折叠得:MD=DC

DEAM

AE=EC

BEAC

AB=BC

∴∠ABE=CBE

由(1)得:ADC≌△BDF

∵△ADC≌△ADM

∴△BDF≌△ADM

∴∠DBF=MAD

∵∠DBA=BAD=45°

∴∠DBA﹣DBF=BAD﹣MAD

即∠ABE=BAN

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE

∴∠ANE=NAE=45°

AE=EN

EN=AC

型】解答
束】
17

【题目】已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在直角坐标系中,A(﹣24B(﹣42);A1B1AB关于y轴的对称点;

1)请在图中画出AB关于原点O的对称点A2B2(保留痕迹,不写作法);并直接写出A1A2B1B2的坐标.

2)试问:在x轴上是否存在一点C,使A1B1C的周长最小,若存在求C点的坐标,若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC为等边三角形,点DE分别在直线ABBC上,且AD=BE.

1)如图1,若点DE分别是ABCB边上的点,连接AECD交于点F,过点EAEG=60°,使EG=AE,连接GD,则AFD= (填度数);

2)在(1)的条件下,猜想DGCE存在什么关系,并证明;

3)如图2,若点DE分别是BACB延长线上的点,(2)中结论是否仍然成立?请给出判断并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系绕,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为abcd,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0101,序号为0×23+1×22+0×21+1×205,表示该生为5班学生,那么表示7班学生的识别图案是( )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张老师打算在小明和小白两位同学之间选一位同学参加数学竞赛,他收集了小明、小白近期10次数学考试成绩,并绘制了折线统计图(如图所示)

项目

众数

中位数

平均数

方差

最高分

小明

85

85

小白

70100

85

100

(1)根据折线统计图,张老师绘制了不完整的统计表,请你补充完整统计表;

(2)你认为张老师会选择哪位同学参加比赛?并说明你的理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】拋物线的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)(-2,0)之间,其部分图象如图,则以下结论:①②当x>-l时,yx增大而减小;③a+b+c<0;④若方程没有实数根,则m>2. 其中正确的结论有________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点Bx轴上,且

求点B的坐标;

的面积;

y轴上是否存在P,使以ABP三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案