精英家教网 > 初中数学 > 题目详情

【题目】如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线lyx3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),mt的函数图象如图2所示,则图2b的值为(

A. 5B. 4C. 3D. 2

【答案】A

【解析】

根据题意可分析出当t=2时,l经过点A,从而求出OA的长,l经过点C时,t=12,从而可求出a,由a的值可求出AD的长,再根据等腰直角三角形的性质可求出BD的长,即b的值.

解:连接BD,如图所示:

直线yx3中,令y0,得x3;令x0,得y=﹣3

即直线yx3与坐标轴围成的OEF为等腰直角三角形,

∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过BD两点,

由图2可得,t2时,直线l经过点A

AO32×11

A10),

由图2可得,t12时,直线l经过点C

∴当t+27时,直线l经过BD两点,

AD=(72×15

∴在等腰RtABD中,BD

即当a7时,b

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,数轴上AB两点对应的有理数分别为ab,且ab满足|a+4|+2b1220

1)求ab的值;

2)点C是数轴上一点,其对应的数是x

①若点C在点AB之间,化简|x+4||x6|

②若CB2CA,求x的值;

3)点M和点N分别同时从点O和点A出发,分别以每秒2个单位长度,每秒3个单位长度的速度向数轴正方向运动,与此同时,点T以每秒5个单位长度的速度从点B出发,开始向左运动,遇到点M后立即返回向右运动,遇到点N后立即返回向左运动,与点M相遇后再立即返回,如此往返,直到MN两点相遇时,点T停止运动,求点T运动的路程一共是多少个单位长度?点T停止的位置所对应的数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:a*b=,则下列等式中对于任意实数 a、b、c 都成立的是( )

①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c

③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)

A. ①②③ B. ①②④ C. ①③④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,海中有一小岛P,在距小岛P海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.

(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;

(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】江夏区某出租车在某一天以江夏体育馆为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9-2-5-4-12+8+3-1-4+10

(1)将最后一名乘客送到目的地,出租车离江夏体育馆出发点多远?

(2)直接写出该出租车在行驶过程中,离江夏体育馆最远的距离是______.

(3)出租车按物价部门规定,行程不超过3km(3km),按起步价8元收费,若行程超过3km的,则超过的部分,每千米加收1.2元,该司机这天的营业额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】工厂加工某种茶叶,计划一周生产千克,平均每天生产千克,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负):

)这一周的实际产量是多少千克?

)该厂规定工人工资参照平均产量计发,每千克元.若超产,则超产的部分每千克元;若低于平均产量,按实际产量计发,而且每少千克扣除元,那么该工厂工人这一周的工资总额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,AC分别在坐标轴上,点B的坐标为(4,2),直线y=–x+3ABBC于点MN,反比例函数的图象经过点MN

(1)求反比例函数的解析式;

(2)若点Px轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

同步练习册答案