精英家教网 > 初中数学 > 题目详情
19.如图所示,△ABC和△BDE都是等边三角形,AE与CD相等吗?说明理由.

分析 根据等边三角形各边长相等的性质,可得AB=BC,BE=BD,根据等边三角形各内角为60°可得∠ABE=∠DBE,进而求证△ABE≌△CBD(SAS),即可求得AE=CD;

解答 证明:∵△ABC是等边三角形,
∴AB=BC,∠ABE=60°
又∵△BDE是等边三角形,
∴BE=BD,∠DBE=60°,
∴∠ABE=∠DBE,
在△ABE和△CBD中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABE=∠DBE}\\{BE=BD}\end{array}\right.$,
∴△ABE≌△CBD(SAS),
∴AE=CD.

点评 本题主要考查对全等三角形的性质和判定,等边三角形的面积等知识点的理解和掌握,熟练地运用性质进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.根据如图所示的程序计算函数值,若输入x的值为$\frac{3}{2}$,则输出的y值为$\frac{7}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.以原点为圆心,1cm为半径的圆分别交x、y轴的正半轴于A、B两点,点P的坐标为(2,0).
(1)如图一,动点Q从点B处出发,沿圆周按顺时针方向匀速运动一周,设经过的时间为t秒,当t=1时,直线PQ恰好与⊙O第一次相切,连接OQ.求此时点Q的运动速度(结果保留).
(2)若点Q按照(1)中的方向和速度继续运动,
①当t为何值时,以O、P、Q为顶点的三角形是直角三角形;
②在①的条件下,如果直线PQ与⊙O相交,请求出直线PQ被⊙O所截的弦长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC中,∠ACB=90°,BC=$\sqrt{5}$,AC=2$\sqrt{5}$,
(1)若⊙C切AB于D,求⊙C半径及切线AD的长;
(2)直接写出⊙C与线段AB有两个公共点时半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,点C,B,E在同一条直线上,AC⊥BC,BD⊥DE,AC=BD=6,AB=10,∠A=∠DBE
(1)求证:AB∥DE;
(2)求CE的长;
(3)求△DBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,C为线段AE上一动点(不与点A,E重合),在AE在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤OC平分∠AOE.一定成立的结论有①②③⑤.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,一副三角板△BCD拼在一起,O为AD的中点,AB=4,将△ABO沿BO对折到△A′BO处,M为边BC上一动点,N为直线A′O一动点,则NB+NM的最小值为2$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:($\frac{1}{2}$)-1-$\sqrt{4}$+(1-$\sqrt{2}$)0-tan45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,正方形ABCD中,点E在对角线AC上,连接EB、ED.
(1)求证:△BCE≌△DCE;
(2)延长BE交AD于点F,若∠DEB=140°,求∠AFE的度数.

查看答案和解析>>

同步练习册答案