精英家教网 > 初中数学 > 题目详情
2.如图,已知在矩形ABCD中,∠ADB=30°,现将矩形ABCD绕点B顺时针旋转45°到矩形GBEF的位置,则∠CBF的度数为(  )
A.15°B.20°C.25°D.30°

分析 首先根据平行线的性质求得∠DBC,然后根据∠CBF=∠DBF-∠DBC即可求解.

解答 解:∵矩形ABCD中,AD∥BC,
∴∠DBC=∠ADB=30°,
又∵∠DBF=45°,
∴∠CBF=∠DBF-∠DBC=45°-30°=15°.
故选A.

点评 本题考查了矩形的性质以及旋转的性质,理解旋转角的概念是本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,△ABC中,AB=AC=16cm,AB的垂直平分线ED交AC于D点.
(1)当AE=13cm时,BE=13cm;
(2)当△BEC的周长为26cm时,则BC=10cm;
(3)当BC=15cm,则△BEC的周长是31cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,正方形ABCD的边CD与Rt△EFG的直角边EF重合,将正方形ABCD以1cm/s的速度沿FE方向移动,在移动过程中,边CD始终与边EF重合(移动开始时点C与点F重合).连接AE,过点C作AE的平行线交直线EG于点H,连接HD.已知正方形ABCD的边长为1cm,EF=4cm,设正方形移动时间为x(s),线段EH的长为y(cm),其中0≤x≤2.5.
(1)当x=2时,AE的长为$\sqrt{2}$cm;
(2)试求出y关于x的函数关系式,并求出△EHD与△ADE的面积之差;
(3)当正方形ABCD移动时间x=$\frac{5-\sqrt{5}}{2}$时,线段HD所在直线经过点B.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知点(-2,2)在二次函数y=ax2上,那么a的值是(  )
A.1B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如果三角形有一个边上的中线长恰好等于这个边的长,那么称这个三角形是“有趣三角形”,这条中线为“有趣中线”.如图,在△ABC中,∠C=90°,较短的一条直角边BC=1,且△ABC是“有趣三角形”,求△ABC的“有趣中线”的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列各选项的两个图形(实线部分),不属于位似图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品价格的概率(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图将4个长、宽分别均为a、b的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是(a+b)2-(a-b)2=4ab.

查看答案和解析>>

同步练习册答案