【题目】如图,已知OM⊥ON,垂足为O,点A、B分别是射线OM、ON上的一点(O点除外).
(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,则∠ACB= ;
(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;
(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE位置关系.
【答案】(1)存在;45°或135°;(2)详见解析;(3)点P一直在以AB为直径的圆上,当P在直径AB的上方时,如图2,有AD∥BE,当P在直径AB的下方时,如图3,有AD⊥BE,
【解析】
(1)分两种情况讨论:①先根据垂直的定义可得:∠AOB=90°,再根据角平分线的定义得:∠ABC+∠BAC=(∠ABO+∠BAO)=45°,由三角形内角和定理可得结论;②根据三角形外角的性质和角平分线的定义,可得结论;
(2)证明∠OAD=∠OEB,可得:AD∥BE;
(3)先根据∠AOB=∠APB=90°,证明O、A、P、B四点共圆,即点P一直在以AB为直径的圆上,通过画图可知:当P在直径AB的上方时,如图2,有AD∥BE,当P在直径AB的下方时,如图3,有AD⊥BE.
解:(1)存在,
有两种情况:①当BC平分∠ABO时,如图1,
∵∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵AC平分∠BAO,BC平分∠ABO,
∴∠BAC=,∠ABC=∠ABO,
∴∠BAC+∠ABC=(∠BAO+∠ABO)=45°,
∴∠ACB=180°﹣45°=135°;
②如下图,当CB平分∠ABN时,
∵∠ABN=90°+∠BAO,
∵AC平分∠BAO,
∴2∠ABE=90°+2∠CAB,
∴∠ABE=45°+∠CAB,
∴∠ACB=∠ABE﹣∠CAB=45°,
综上,∠ACB的度数为45°或135°;
故答案为:45°或135°;
(2)如图2,∵∠AOB=∠P=90°,
∴∠OAP+∠OBP=180°,
∴∠OAP+∠OBP=90°,
∵AD平分∠OAP,BE平分∠OBP,
∴∠OAD=∠OAP=90°﹣,∠OBE=∠OBP,
∵∠OBE+∠OEB=90°,
∴∠OEB=90°﹣∠OBE=90°﹣∠OBP,
∴∠OAD=∠OEB,
∴AD∥BE;
(3)∵∠AOB=∠APB=90°,
∴点P一直在以AB为直径的圆上,
当P在直径AB的上方时,如图2,有AD∥BE,
当P在直径AB的下方时,如图3,有AD⊥BE,
理由是:∵∠OAP=∠OBP,
∵AD平分∠OAP,BE平分∠OBP,
∴∠PAD=∠OAP,∠DBE=∠OBP,
∴∠PAD=∠DBE,
∵∠ADP=∠BDG,
∴∠APB=∠AGB,
∴AD⊥BE.
科目:初中数学 来源: 题型:
【题目】某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:直线EF//MN,点A、B分别为EF,MN上的动点,且∠ACB= a,BD平分∠CBN交EF于D.
(1)若∠FDB=120°,a=90°.如图1,求∠MBC与∠EAC的度数?
(2)延长AC交直线MN于G,这时a =80°,如图2,GH平分∠AGB交DB于点H,问∠GHB是否为定值,若是,请求值.若不是,请说明理由?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,将抛物线C1:y=x2绕点(1,0)旋转180°后,得到抛物线C2,定义抛物线C1和C2上位于﹣2≤x≤2范围内的部分为图象C3.若一次函数y=kx+k﹣1(k>0)的图象与图象C3有两个交点,则k的范围是:__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD=4,对角线AC与BD交于点O,OE⊥AC交BC于点E,CE=3,则矩形ABCD的面积为( )
A.B.C.12D.32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com