精英家教网 > 初中数学 > 题目详情
11.如图,BD是平行四边形ABCD的对角线,若∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE与BF相交于H,BF与AD的延长线相交于G.求证:
(1)CD=BH;
(2)AB是AG和HE的比例中项.

分析 (1)根据已知利用AAS判定△BEH≌△DEC,从而得到BH=DC;
(2)根据两组角对应相等的两个三角形相似得到△BEH∽△GBA,相似三角形的对应边成比例所以BH•AB=EH•AG,由于BH=DC=AB所以推出了AB2=GA•HE.

解答 证明:(1)∵在?ABCD中,DE⊥BC,∠DBC=45°,
∴∠DEC=∠BEH=90°,DE=BE,
∵∠EBH+∠BHE=90°,∠DHF+∠CDE=90°,
∴∠EBH=∠EDC,
在△BEH与△DEC中,
$\left\{\begin{array}{l}{∠EBH=∠CDE}\\{BE=DE}\\{∠BEH=∠CED}\end{array}\right.$,
∴△BEH≌△DEC.
∴BH=DC;

(2)∵四边形ABCD是平行四边形,
∴AG∥BC,∠A=∠C=∠BHE,AB=CD,
∴∠G=∠HBE,
∴△BEH∽△GBA,
∴BH•AB=EH•AG,
∵BH=DC=AB,
∴AB2=GA•HE.

点评 此题主要考查了平行四边形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.计算下列各题
(1)$\root{3}{-27}$-$\sqrt{0}$-$\sqrt{4}$+$\sqrt{169}$            
(2)$\root{3}{0.125}$+$\root{3}{1-\frac{63}{64}}$-$\sqrt{(-1)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,AB是⊙O的直径,D是⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C
(1)求证:CT为⊙O的切线;
(2)若AD=2,TC=$\sqrt{3}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平行四边形ABCD中,F是AD的中点,延长BC到点E,使CE=$\frac{1}{2}$BC,连结DE、CF,连接BD交CF于点P.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=4,AD=6,∠ABC=60°,求△DCE的周长;
(3)在(2)的条件下,求△BPC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.计算:($\frac{1}{a}+\frac{b}{a}$)$•\frac{2a}{b+1}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算
(1)(-$\frac{2}{3}$xy)•($\frac{2}{3}$x2y-4xy2+$\frac{4}{3}$y)       
(2)(-x23•x2+(2x24-3(-x)3•x5
(3)2-2×(π-3)0-(-3-12×32

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如用,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论中:①AB=BF;②AE=ED;③AD=DC;④∠ABE=∠DFE;⑤$\frac{AB}{BD}$=$\frac{CF}{DF}$,正确的是(  )
A.①③B.①⑤C.③④D.①②⑤

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若四边形的两条对角线垂直,则顺次连接该四边形各边中点所得的四边形是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在平面直角坐标系中,点A(0,3),B(5,0),连接AB.
(1)将绕点O按逆时针方向旋转,得到△OCD,(点A落到点C处),求经过B、C、D三点的抛物线的解析式.
(2)现将(1)中抛物线向右平移两个单位,点C的对应点为E,点B的对应点为N,平移后的抛物线与原抛物线相交于点F;P、Q为平移后抛物线对称轴上的两个动点,(点Q在点P的上方),且PQ=1,要使四边形PQFE的周长最小,求出P、Q两点的坐标.

查看答案和解析>>

同步练习册答案