精英家教网 > 初中数学 > 题目详情

【题目】现有7张下面分别标有数字-2-101234的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使得关于x的二次函数y=x2-2x+m-2x轴有交点,且交于x的分式方程有解的概率为___

【答案】

【解析】

根据关于x的二次函数y=x2-2x+m-2x轴有交点,求出m的取值范围,再根据分式方程求出符合条件的m的值,即可求出概率.

关于x的二次函数y=x2-2x+m-2x轴有交点,

∴△=b2-4ac=4-4m-2≥0

解得m≤3

∴m=-2-10123

解分式方程得x=

m≠2m≠1时,方程有解,

∴m=-2-103

故使得关于x的二次函数y=x2-2x+m-2x轴有交点,且交于x的分式方程有解的概率为

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,点D上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.

(1)求证:AC=CE;

(2)求证:BC2﹣AC2=ABAC;

(3)已知⊙O的半径为3.

①若=,求BC的长;

②当为何值时,ABAC的值最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).

(1)试作出△ABCC为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;

(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,按下列步骤作图:

①以点B为圆心,以适当长为半径作弧,交AB于点M.交BC于点N

②再分别以点M和点N为圆心,大于MN的长为半径作弧,两弧交于点G

③作射线BGADF

④过点AAEBFBF于点P,交BC于点E

⑤连接EFPD

1)求证:四边形ABEF是菱形;

2)若AB4AD6,∠ABC60°,求DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按0.5元的倍数上涨),当天销售利润为元.

1)求的函数关系式(不要求写出自变量的取值范围);

2)要使当天销售利润不低于240元,求当天销售单价所在的范围;

3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了迎接小长假的购物高峰.某服装专卖店老板小王准备购进甲、乙两种夏季服装.其中甲种服装每件的成本价比乙种服装的成本价多20元,甲种服装每件的售价为240元比乙种服装的售价多80元.小王用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同.

1)甲种服装每件的成本是多少元?

2)要使购进的甲、乙两种服装共200件的总利润(利润=售价-进价)不少于21100元,且不超过21700元,问小王有几种进货方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线经过两点,与x轴交于另一点B

求抛物线的解析式;

已知点在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;

如图2,若抛物线的对称轴为抛物线顶点与直线BC相交于点FM为直线BC上的任意一点,过点M交抛物线于点N,以EFMN为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y1x2+bx+cy2x2+cx+bbc)的图象相交于点A,分别与y轴相交于点CB,连接ABAC

1)过点(10)作直线l平行于y轴,判断点A与直线l的位置关系,并说明理由.

2)当AC两点是二次函数y1x2+bx+c图象上的对称点时,求b的值.

3)当ABC是等边三角形时,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠A30°,在AB边上取点D,以BD为直径作O,与AC边切于点F,交BC边于点E

1)若BC3,求O的半径;

2连接OFEF,则四边形OFEB的形状为   

写出你的推断过程.

查看答案和解析>>

同步练习册答案