精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2n次移动到An.则△OA6A2020的面积是(

A.505B.504.5C.505.5D.1010

【答案】A

【解析】

由题意结合图形可得OA4n2n,由2020÷4505,推出OA20202020÷21010A6x轴距离为1,由此即可解决问题.

解:由题意知OA4n2n

∵2020÷4505

∴OA20202020÷21010A6x轴距离为1

△OA6A2020的面积是×1010×1505m2).

故答案为A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(  ).

A. “打开电视机,正在播放《动物世界》”是必然事件

B. 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖

C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为

D. 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.

(1)写出点D的坐标

(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c(a≠0)的图象过点A.

①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;

②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为 时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;

③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,A(a0)B(0b),且ab满足,连接ABAB=5.C(-70)x轴负半轴上一点,连接BC.

(1)OAOB的长;

(2)动点P从点B出发,沿BA以每秒2个单位的速度向终点A匀速运动,连接CP,设点P的运动时间为t,△CBP的面积为S,用含t的代数式表示S(不要求写出t的取值范围)

(3)(2)的条件下,连接OP,是否存在t值,使SBCP=SPCO,如果存在,求出相应的t值,并直接写出P点坐标.若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=ax+223y2=x32+1交于点A13),过点Ax轴的平行线,分别交两条抛物线于点BC.则以下结论:

①无论x取何值,y2的值总是正数;

a=1

③当x=0时,y2﹣y1=4

2AB=3AC

其中正确结论是(  )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1. 5倍.设两人出发x min后距出发点的距离为y m.图中折线段OBA表示小明在整个训练中yx的函数关系,其中点Ax轴上,点B坐标为(2480)

1)点B所表示的实际意义是

2)求出AB所在直线的函数关系式;

3)如果小刚上坡平均速度是小明上坡平均速度的一半,那么两人出发后多长时间第一次相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中有三点A(﹣21),B31),C23),请解答下列问题:

1)在坐标系内描出ABC的位置;

2)画出△ABC关于x轴对称的图形△A1B1C1,并写出顶点A1B1C1的坐标;

3)写出∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1

(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)(观察思考):如图,线段AB上有两个点CD,图中共有 条线段;

2)(模型构建):如果线段上有m个点(包括线段的两个端点),则该线段上共有 条线段.请简要说明结论的正确性;

3)(拓展应用):8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行 场比赛.类比(模型构建)简要说明.

查看答案和解析>>

同步练习册答案