【题目】在的方格纸中,每个小格的顶点叫做格点.以格点连线为边的三角形叫做格点三角形.
请你在图的方格纸中,画一个格点三角形,使与一个格点三角形相似(相似比不为).
请你在图的方格纸中,画一个格点三角形,使与一个格点三角形相似,面积最大,并求最大值是多少.
与的相似比不是的格点三角形共有几个(相似比相同时只算个)?
【答案】(1)详见解析;(2)详见解析;(3)4个.
【解析】
(1)根据网格结构,利用三边对应成比例两三角形相似,根据勾股定理作出相似的三角形即可;(2)根据网格结构,在网格中所画三角形的边长最长为,再利用三边对应成比例两三角形相似,根据勾股定理作出相似的三角形即可,利用相似三角形面积的比等于相似比的平方求大三角形的面积即可;(3)根据勾股定理、网格结构及相似三角形的性质,在网格中可以画出边长分别为① ;②;③ ;④、、的三角形,与△ABC相似,故答案为4个.
如图所示:
如图所示:
最大格点三角形三边分别为:,,;
根据相似比为:,
∴三角形面积比为:,
∴最大值为:.
根据三角形最大边长以及最小边长即可得出答案:个.
科目:初中数学 来源: 题型:
【题目】某市长途客运站每天6:30—7:30开往某县的三辆班车票价相同,但车的舒适程度不同.小张和小王因事需在这一时段乘车去该县,但不知道三辆车开来的顺序,两人采用不同的乘车方案:小张无论如何决定乘坐开来的第一辆车,而小王则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.若第二辆车的状况比第一辆车好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车.若按这三辆车的舒适程度分为优、中、差三等,请你思考并回答下列问题:
(1)三辆车按出现的先后顺序共有哪几种可能?
(2)请列表分析哪种方案乘坐优等车的可能性大?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,△ABC为等边三角形,其中点A,B,C的坐标分别为(-3,-1),(-3,-3),(-3+,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2.
(1)直接写出点C1,C2的坐标.
(2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?若能,请直接写出所旋转的度数;若不能,请说明理由.
(3)设当△ABC的位置发生变化时,△A2B2C2,△A1B1C1与△ABC之间的对称关系始终保持不变.
①当△ABC向上平移多少个单位长度时,△A1B1C1与△A2B2C2完全重合?并直接写出此时点C的坐标;
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少?点C的坐标又是什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】AD是△BAC的角平分线,过D向AB、AC两边作垂线,垂足为E、F,则下列错误的是( )
A.DE=DFB.AE=AFC.BD=CDD.∠ADE=∠ADF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某省为推广新能源汽车,计划连续五年给予财政补贴.补贴开始时间为年度,截止时间为年度.补贴期间后一年度的补贴额均在前一年度补贴额基础上递增.计划前三年,每年度按固定额度亿元递增;后两年均在上一年的基础上按相同增长率递增.已知年度计划补贴额为亿元.
若年度计划补贴额比年度至少增加,求的取值范围;
若预计这五年补贴总额比年度补贴额的倍还多亿元,求后两年财政补贴的增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.
(1)求证:△AEF≌△DEB;
(2)若∠BAC=90°,求证:四边形ADCF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车从甲地出发以每小时80 km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5 h后,在距乙地160 km处与轿车相遇.图中线段AB表示货车离乙地的距离y1 km与货车行驶时间x h的函数关系.
(1)求y1与x之间的函数表达式;
(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图像,求该图像与x轴交点坐标并解释其实际意义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】转转盘和摸球是等可能概率下的经典模型.
(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.
(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com