【题目】如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=10°,则∠P的度数为____________.
【答案】
【解析】
延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A-∠D),然后代入数据计算即可得解.
解:如图,延长PC交BD于E,
∵∠ABD,∠ACD的角平分线交于点P,
∴∠1=∠2,∠3=∠4,
由三角形的内角和定理得,∠A+∠1=∠P+∠3①,
在△PBE中,∠5=∠2+∠P,
在△BCE中,∠5=∠4-∠D,
∴∠2+∠P=∠4-∠D②,
由①-②得,∠A-∠P=∠P+∠D,
∴∠P=(∠A-∠D),
∵∠A=60°,∠D=10°,
∴∠P=(60°-10°)=25°.
故答案为:25°.
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地轿车的平均速度大于货车的平均速度,如图,线段OA、折线BCD分别表示两车离甲地的距离单位:千米与时间单位:小时之间的函数关系.
线段OA与折线BCD中,______表示货车离甲地的距离y与时间x之间的函数关系.
求线段CD的函数关系式;
货车出发多长时间两车相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,点O为对角线BD的中点,DE、BF分别平分∠ADC和∠ABC.
(1)求证:EF、BD互相平分;
(2)若∠A=60,AE=2EB,AD=4,求四边形DEBF的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管( )根.
A. 2 B. 4 C. 5 D. 无数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=30°,∠AOE=130°,OB平分∠AOC, OD平分∠AOE.
(1)求∠COD的度数;
(2)若以O为观测中心,OA为正东方向,则射线OD的方位角是 ;
(3)若∠AOC、射线OE分别以每秒5°、每秒3°的速度同时绕点O逆时针方向旋转,其他条件不变,当OA回到原处时,全部停止运动,则经过多长时间,∠BOE=28°?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC中,∠B<∠C,AD,AE分别是△ABC的高和角平分线,
(1)若∠B=30°,∠C=50°.则∠DAE的度数是 .(直接写出答案)
(2)写出∠DAE、∠B、∠C的数量关系: ,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在四边形ABCD中,∠A=∠C=90°.
(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明.
(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.
(3)如图3,若BE、DE分别六等分∠ABC、∠ADC的邻补角(即∠CBE=∠CBM,∠CDE=∠CDN),则∠E= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线MN表示一条铁路,A,B是两个城市,它们到铁路的垂直距离分别为AA1=20km,BB1=40km,已知A1B1=80km,现要在A1,B1之间设一个中转站P,使两个城市到中转站的距离之和最短,请你设计一种方案确定P点的位置,并求这个最短距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂一周计划每天生产200辆电动车,由于各种原因,实际每天的产量与计划相比有出入,下表是某周生产情况(超产为正,减产为负)
星期 | 一 | 二 | 三 | 四 | 五 |
增减 | +5 | -2 | -4 | +13 | -10 |
(1)产量最多一天是 辆,最少的一天是 辆.
(2)这一周一共生产了多少辆?
(3)该工厂按天计件计算工资,每生产一辆可得50元,若每超额一辆另奖15元,每少生产一辆另扣30元,那么该厂工人本周前三天的工资是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com