精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD。
(1)求直线AB的解析式;
(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;
(3)是否存在点P,使△OPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由。
解:(1)如图,过点B作BE⊥y轴于点E,作BF⊥x 轴于点F
由已知得BF=OE=2,OF=
∴点B的坐标是(,2)
设直线AB的解析式是y=kx+b,
则有
解得
∴直线AB的解析式是y=x+4。
(2)如图,∵△ABD由△AOP旋转得到,
∴△ABD≌△AOP,
∴AP=AD,∠DAB=∠PAO,
∴∠DAP=∠BAO=60°,
∴△ADP是等边三角形,
∴DP=AP=
如图,过点D作DH⊥x 轴于点H,延长EB交DH于点G,则BG⊥DH
在Rt△BDG中,∠BGD=90°,∠DBG=60°
∴BG=BD·cos60°=
DG=BD·sin60°=
∴OH=EG=,DH=
∴点D的坐标为()。
(3)假设存在点P,在它的运动过程中,使△OPD的面积等于
设点P为(t,0),下面分三种情况讨论:
①当t>0时,如图,BD=OP=t,DG=t,
∴DH=2+t
∵△OPD的面积等于

解得( 舍去)
∴点P1的坐标为 (,0 )。
②当<t≤0时,如图,BD=OP=-t,BG=-t,
∴DH=GF=2-(-t)=2+t
∵△OPD的面积等于

解得
∴点P2的坐标为(,0),点P3的坐标为(,0)。
③当t≤时,如图,BD=OP=-t,DG=-t,
∴DH=-t-2
∵△OPD的面积等于

解得(舍去),
∴点P4的坐标为(,0)
综上所述,点P的坐标分别为P1,0)、P2,0)、P3,0)、P4,0)。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案