【题目】解不等式 ﹣ ≥1,并把它的解集在数轴上表示出来.
科目:初中数学 来源: 题型:
【题目】下列4组条件中,能判定△ABC∽△DEF的是( )
A.AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°
B.∠A=45°,∠B=55°;∠D=45°,∠F=75°
C.BC=4,AC=6,AB=9;DE=18,EF=8,DF=12
D.AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系 xOy中,对于点P(x,y),以及两个无公共点的图形W1和W2 , 若在图形W1和W2上分别存在点M (x1 , y1 )和N (x2 , y2 ),使得P是线段MN的中点,则称点M 和N被点P“关联”,并称点P为图形W1和W2的一个“中位点”,此时P,M,N三个点的坐标满足x= ,y=
(1)已知点A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),连接AB,CD.
①对于线段AB和线段CD,若点A和C被点P“关联”,则点P的坐标为;
②线段AB和线段CD的一“中位点”是Q (2,﹣ ),求这两条线段上被点Q“关联”的两个点的坐标;
(2)如图1,已知点R(﹣2,0)和抛物线W1:y=x2﹣2x,对于抛物线W1上的每一个点M,在抛物线W2上都存在点N,使得点N和M 被点R“关联”,请在图1 中画出符合条件的抛物线W2;
(3)正方形EFGH的顶点分别是E(﹣4,1),F(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圆心为T(3,0),半径为1.请在图2中画出由正方形EFGH和⊙T的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定方法.我们给出如下定义:如图,四边形ABCD中,AB=AD,CB=CD像这样两组邻边分别相等的四边形叫做“筝形”;
(1)小文认为菱形是特殊的“筝形”,你认为他的判断正确吗?
(2)小文根据学习几何图形的经验,通过观察、实验、归纳、类比、猜想、证明等方法,对AB≠BC的“筝形”的性质和判定方法进行了探究.下面是小文探究的过程,请补充完成:
①他首先发现了这类“筝形”有一组对角相等,并进行了证明,请你完成小文的证明过程.
已知:如图,在”筝形”ABCD中,AB=AD,CB=CD.
求证:∠ABC=∠ADC.
证明:②小文由①得到了这类“筝形”角的性质,他进一步探究发现这类“筝形”还具有其它性质,请再写出这类“筝形”的一条性质(除“筝形”的定义外);
③继性质探究后,小文探究了这类“筝形”的判定方法,写出这类“筝形”的一条判定方法(除“筝形”的定义外):
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了更好地贯彻落实国家关于“强化体育课和课外锻炼,促进青少年身心健康、体魄强健”的精神,某校大力开展体育活动.该校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:
(1)求该班学生人数;
(2)请你补全条形图;
(3)求跳绳人数所占扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是AC上一点,联结BD,∠CBD=∠A.
(1)求证:△CBD∽△CAB;
(2)若D是AC中点,CD=3,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=x2+mx+n﹣1的对称轴为x=2.
(1)m的值为;
(2)若抛物线与y轴正半轴交于点A,其对称轴与x轴交于点B,当△OAB是等腰直角三角形时,求n的值;
(3)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个交点,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于 BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为( )
A.5
B.6
C.7
D.8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com