精英家教网 > 初中数学 > 题目详情

【题目】解不等式 ≥1,并把它的解集在数轴上表示出来.

【答案】解:去分母得:2(2x﹣1)﹣3(5x+1)≥6,
4x﹣2﹣15x﹣3≥6,
﹣11x≥11,
x≤﹣1,
在数轴上表示不等式的解集为:
【解析】去分母,去括号,移项,合并同类项,系数化成1即可.
【考点精析】通过灵活运用不等式的解集在数轴上的表示和一元一次不等式的解法,掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1(特别要注意不等号方向改变的问题)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列4组条件中,能判定△ABC∽△DEF的是(  )
A.AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°
B.∠A=45°,∠B=55°;∠D=45°,∠F=75°
C.BC=4,AC=6,AB=9;DE=18,EF=8,DF=12
D.AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系 xOy中,对于点P(x,y),以及两个无公共点的图形W1和W2 , 若在图形W1和W2上分别存在点M (x1 , y1 )和N (x2 , y2 ),使得P是线段MN的中点,则称点M 和N被点P“关联”,并称点P为图形W1和W2的一个“中位点”,此时P,M,N三个点的坐标满足x= ,y=
(1)已知点A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),连接AB,CD.
①对于线段AB和线段CD,若点A和C被点P“关联”,则点P的坐标为
②线段AB和线段CD的一“中位点”是Q (2,﹣ ),求这两条线段上被点Q“关联”的两个点的坐标;
(2)如图1,已知点R(﹣2,0)和抛物线W1:y=x2﹣2x,对于抛物线W1上的每一个点M,在抛物线W2上都存在点N,使得点N和M 被点R“关联”,请在图1 中画出符合条件的抛物线W2
(3)正方形EFGH的顶点分别是E(﹣4,1),F(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圆心为T(3,0),半径为1.请在图2中画出由正方形EFGH和⊙T的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: ﹣( ﹣1)0+( 2﹣4sin45°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定方法.我们给出如下定义:如图,四边形ABCD中,AB=AD,CB=CD像这样两组邻边分别相等的四边形叫做“筝形”;

(1)小文认为菱形是特殊的“筝形”,你认为他的判断正确吗?
(2)小文根据学习几何图形的经验,通过观察、实验、归纳、类比、猜想、证明等方法,对AB≠BC的“筝形”的性质和判定方法进行了探究.下面是小文探究的过程,请补充完成:
①他首先发现了这类“筝形”有一组对角相等,并进行了证明,请你完成小文的证明过程.
已知:如图,在”筝形”ABCD中,AB=AD,CB=CD.
求证:∠ABC=∠ADC.
证明:②小文由①得到了这类“筝形”角的性质,他进一步探究发现这类“筝形”还具有其它性质,请再写出这类“筝形”的一条性质(除“筝形”的定义外)
③继性质探究后,小文探究了这类“筝形”的判定方法,写出这类“筝形”的一条判定方法(除“筝形”的定义外):

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好地贯彻落实国家关于“强化体育课和课外锻炼,促进青少年身心健康、体魄强健”的精神,某校大力开展体育活动.该校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:

(1)求该班学生人数;
(2)请你补全条形图;
(3)求跳绳人数所占扇形圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D是AC上一点,联结BD,∠CBD=∠A.
(1)求证:△CBD∽△CAB;
(2)若D是AC中点,CD=3,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=x2+mx+n﹣1的对称轴为x=2.
(1)m的值为
(2)若抛物线与y轴正半轴交于点A,其对称轴与x轴交于点B,当△OAB是等腰直角三角形时,求n的值;
(3)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个交点,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于 BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为(
A.5
B.6
C.7
D.8

查看答案和解析>>

同步练习册答案