精英家教网 > 初中数学 > 题目详情

【题目】如图,将ABC绕点B逆时针旋转α得到DBE,DE的延长线与AC相交于点F,连接DA、BF,ABC=α=60°,BF=AF

1求证:DABC;

2猜想线段DF、AF的数量关系,并证明你的猜想

【答案】1证明见解析;2猜想:DF=2AF,证明见解析

【解析】

试题1利用等边三角形的判定与性质得出DAB=ABC,进而得出答案;

2首先利用旋转的性质以及全等三角形的判定方法得出DBG≌△ABFSAS,进而得出BGF为等边三角形,求出DF=DG+FG=AF+AF=2AF

试题解析:1由旋转的性质可知:DBE=ABC=60°,BD=AB,

∴△ABD为等边三角形,

∴∠DAB=60°,

∴∠DAB=ABC,

DABC;

2猜想:DF=2AF,

证明如下:如图,在DF上截取DG=AF,连接BG,

由旋转的性质可知,DB=AB,BDG=BAF,

DBG和ABF中,

∴△DBG≌△ABFSAS

BG=BF,DBG=ABF,

∵∠DBG+GBE=α=60°,

∴∠GBE+ABF=60°,即GBF=α=60°,

BG=BF,

∴△BGF为等边三角形,

GF=BF,

BF=AF,

FG=AF,

DF=DG+FG=AF+AF=2AF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图已知函数 y=x+1 的图象与 y 轴交于点 A一次函数 y=kx+b 的图象经过点 B0﹣1),与x 以及 y=x+1 的图象分别交于点 C、D且点 D 的坐标为1n),

1n= k= b=

2函数 y=kx+b 的函数值大于函数 y=x+1 的函数值则X的取值范围是

3求四边形 AOCD 的面积;

4 x轴上是否存在 P使得以点 PCD 为顶点的三角形是直角三角形?若存在求出点 P 的坐标; 若不存在请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B在一直线上,小明从点A出发沿AB方向匀速前进,4秒后走到点D,此时他(CD)在某一灯光下的影长为AD,继续沿AB方向以同样的速度匀速前进4秒后到点F,此时他(EF)的影长为2米,然后他再沿AB方向以同样的速度匀速前进2秒后达点H,此时他(GH)处于灯光正下方.

(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);

(2)求小明沿AB方向匀速前进的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图:点(1,3)在函数y=(x>0)的图象上,矩形ABCD的边BCx轴上,E是对角线BD的中点,函数y=(x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:

(1)k的值;

(2)求点A的坐标;(用含m代数式表示)

(3)当∠ABD=45°时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,弦BDAOE,连接BC,过点OOFBCF,若BD=8cm,AE=2cm,则OF的长度是(  )

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形边在轴上,边在轴上.把沿折叠得到交于点

1)如图1,求证:

2)如图1,若.写出所在直线的解析式.

3)如图2,在(2)的条件下,中点,是直线上一动点,是否有最小值,若有请求出最小值,若没有请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BEAD于点E.将点C翻折到对角线BD上的点N处,折痕DFBC于点F

1)求证:四边形BFDE为平行四边形;

2)若四边形BFDE为菱形,且AB2,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:

(1)画出ABC关于y轴对称的A1B1C1,并写出A1的坐标.

(2)画出ABC绕点B逆时针旋转90°后得到的A2B2C2,并写出A2的坐标.

(3)画出A2B2C2关于原点O成中心对称的A3B3C3,并写出A3的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,DEAB,过点EEFDE,交BC的延长线于点F

1)求∠F的度数;

2)若CD4,求EF的长.

查看答案和解析>>

同步练习册答案