精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC的两条高BE、CD相交于点O,且OB=OC,求证:△ABC是等腰三角形.
分析:由OB=OC,即可求得∠OBC=∠OCB,又由锐角△ABC的两条高BE、CD相交于点O,根据三角形的内角和等于180°,即可证得△ABC是等腰三角形.
解答:证明:∵OB=OC,
∴∠OBC=∠OCB,
∵锐角△ABC的两条高BE、CD相交于点O,
∴∠BEC=∠BDC=90°,
∵∠DOB=∠EOC,
∴∠DBO=∠ECO,
∴∠OBC+∠DBO=∠OCB+∠ECO,
即:∠ABC=∠ACB
∴AB=AC,
∴△ABC是等腰三角形.
点评:此题考查了等腰三角形的判定.此题难度不大,注意等角对等边定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案