精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,ABACE在线段AC上,DAB的延长线,连DEBCF,过点EEGBCG

1)若∠A50°,∠D30°,求∠GEF的度数;

2)若BDCE,求证:FGBF+CG

【答案】(1)55°;(2)见解析

【解析】

1)根据等腰三角形两底角相等及三角形内角和定理求出∠C,再根据直角三角形两锐角互余求出∠CEG,然后根据三角形的外角的性质求出∠CEF,即可得到结论;

2)过点EEHABBCH,根据平行线的性质可得∠ABC=EHC,∠D=FEH,然后求出∠EHC=C,再根据等角对等边可得EC=EH,得出BD=EH,再利用“角角边”证明△BDF和△HEF全等,根据全等三角形对应边相等可得BF=FH,根据等腰三角形三线合一的性质可得CG=HG,即可得到结论.

1)∵∠A=50°,∴∠C180°﹣∠A180°﹣50°)=65°.

EGBC,∴∠CEG=90°﹣∠C=90°﹣65°=25°.

∵∠A=50°,∠D=30°,∴∠CEF=A+D=50°+30°=80°,∴∠GEF=CEF﹣∠CEG=80°﹣25°=55°;

2)过点EEHABBCH,则∠ABC=EHC,∠D=FEH

AB=AC,∴∠ABC=C,∴∠EHC=C,∴EC=EH

BD=CE,∴BD=EH

在△BDF和△HEF中,∵,∴△BDF≌△HEFAAS),∴BF=FH

又∵EC=EHEGBC,∴CG=HG,∴FG=FH+HG=BF+CG

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

小明遇到一个问题:在中,三边的长分别为,求的面积.

小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为),再在网格中画出格点(即三个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法.

参考小明解决问题的方法,完成下列问题:

)图是一个的正方形网格(每个小正方形的边长为) .

①利用构图法在答卷的图中画出三边长分别为的格点

②计算①中的面积为__________.(直接写出答案)

)如图,已知,以为边向外作正方形,连接

①判断面积之间的关系,并说明理由.

②若直接写出六边形的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形纸片ABCD折叠,使点C与点A重合,折痕EF分别与ABDC交于点E和点F

1)证明:ADF≌△ABE

2)若AD=12DC=18,求AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,AC平分∠BADAB=AC=5AD=3BC=CD.则点CAB的距离是( )

A.B.C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点在等边的边上,,射线于点,点是射线上一动点,点是线段上一动点,当的值最小时,,则( )

A. 14B. 13C. 12D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx+b的图象经过点(﹣2,5),并且与y轴交于点P,直线y=x+3与y轴交于点Q,点Q恰与点P关于x轴对称,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB6BC8,点EBC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为,以为圆心,为半径画圆,交直线l于点,交x轴正半轴于点,以为圆心,为半径画圆,交直线l于点,交x轴正半轴于点,以为圆心,为半径画圆,交直线l于点,交x轴正半轴于点按此做法进行下去,其中的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是一片水田,某村民小组需计算其面积,测得如下数据:∠A=90°,∠ABD=60°,∠CBD=54°,AB=200 m,BC=300 m.请你计算出这片水田的面积.(参考数据:sin 54°≈0.809,cos 54°≈0.588,tan 54°≈1.376,=1.732)

查看答案和解析>>

同步练习册答案