【题目】如图,正方形ABCD的边长是9,点E是AB边上的一个动点,点F是CD边上一点,CF=4,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点A′,D′处,当点D′落在直线BC上时,线段AE的长为_____.
【答案】2或8
【解析】
分两种情况:①当D′落在线段BC上时,连接ED、ED′、DD′,由折叠可得,D,D'关于EF对称,即EF垂直平分DD',得出DE=D′E,求出DF=D′F=CD﹣CF=5,CD′=,得出BD'=BC﹣CD'=6,设AE=x,则BE=9﹣x,在Rt△AED和Rt△BED'中,由勾股定理得出方程,解方程即可;
②当D′落在线段BC延长线上时,连接ED、ED′、DD′,解法同①.
解:分两种情况:①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:
由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
∴DE=D′E,
∵正方形ABCD的边长是9,
∴AB=BC=CD=AD=9,
∵CF=4,
∴DF=D′F=CD﹣CF=9﹣4=5,
∴CD′=,
∴BD'=BC﹣CD'=6,
设AE=x,则BE=9﹣x,
在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=92+x2,D'E2=BE2+BD'2=(9﹣x)2+62,
∴92+x2=(9﹣x)2+62,
解得:x=2,
即AE=2;
②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:
由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
∴DE=D′E,
∵正方形ABCD的边长是9,
∴AB=BC=CD=AD=9,
∵CF=4,
∴DF=D′F=CD﹣CF=9﹣4=5,CD′=,
∴BD'=BC+CD'=12,
设AE=x,则BE=9﹣x,
在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=92+x2,D'E2=BE2+BD'2=(9﹣x)2+122,
∴92+x2=(9﹣x)2+122,
解得:x=8,即AE=8;
综上所述,线段AE的长为2或8;
故答案为:2或8.
科目:初中数学 来源: 题型:
【题目】如图,图中每个小方格都是边长为1个单位长度的正方形,在方格纸中的位置如图所示.
(1)请在图中建立平面直角坐标系,使得,两点的坐标分别为,,并写出点的坐标;
(2)在图中作出绕坐标原点旋转后的,并写出,,的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MAN=60°,点B在射线AM上,AB=4,点P为直线AN上一动点,以BP为边作等边三角形BPQ(点B,P,Q按顺时针排列),点O是△BPQ的外心.
(1)如图1,当OB⊥AM时,点O________∠MAN的平分线上(填“在”或“不在”);
(2)求证:当点P在射线AN上运动时,总有点O在∠MAN的平分线;
(3)当点P在射线AN上运动(点P与点A不重合)时,AO与BP交于点C,设AP=m,用m表示AC·AO;
(4)若点D在射线AN上,AD=2,圆I为△ABD的内切圆.当△BPQ的边BP或BQ与圆I相切时,请直接写出点A与点O的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农产品公司以元的成本收购了某种农产品吨,目前可以以元/吨的价格直接售出.而该公司对这批农产品有以下两种处理方式可供选择:
方式一:公司可将部分农产品直接以元/吨的价格售出,剩下的全部加工成半成品出售(加工成本忽略不计),每吨该农产品可以加工得到吨的半成品,每吨半成品的售价为元.
方式二:公司将该批农产品全部储藏起来,这样每星期会损失吨,且每星期需支付各种费用元,但同时每星期每吨的价格将上涨元.
(1)若该公司选取方式一处理该批农产品,最终获得了的利润率,求该公司直接销售了多少吨农产品?
(2)若该公司选取方式二处理该批农产品,最终获利1元,求该批农产品储藏了多少个星期才出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组对函数y=x+的图象和性质进行了探究,探究过程如下,请补充完整.
x | … | ﹣3 | ﹣2 | ﹣1 | - | - | 1 | 2 | 3 | … | ||
y | … | - | m | ﹣2 | - | - | 2 |
| … |
(1)自变量x的取值范围是 ,m= .
(2)根据(1)中表内的数据,在如图所示的平面直角坐标系中描点,画出函数图象的一部分,请你画出该函数图象的另一部分.
(3)请你根据函数图象,写出两条该函数的性质;
(4)进一步探究该函数的图象发现:
①方程x+=3有 个实数根;
②若关于x的方程x+=t有2个实数根,则t的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点为二次函数图象的顶点,直线分别交轴的负半轴和轴于点,点.
(1)若二次函数图象经过点,求二次函数的解析式.
(2)如图,若点坐标为,且点在内部(不包含边界).
①求的取值范围;
②若点,都在二次函数图象上,试比较与的大小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以矩形ABCD的边CD为直径作⊙O,点E是AB 的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.
(1)若连接AO,试判断四边形AECO的形状,并说明理由;
(2)求证:AH是⊙O的切线;
(3)若AB=6,CH=2,则AH的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com