精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,EF分别是边ADCD上的点,AE=EDDF=DC,连接EF并延长交BC的延长线于点G

(1)求证:ABE∽△DEF

(2)若正方形的边长为4,求BG的长.

【答案】1)见解析(210

【解析】

1)利用正方形的性质,可得∠A=∠D,根据已知条件可知,根据两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG的长,即可求出BG的长.

1)证明:∵四边形ABCD为正方形,

AD=AB=DC=BC, ∠A=∠D=90°

AE=ED

∵DF=DC

∴△ABE∽△DEF

2)解:∵四边形ABCD为正方形,

EDBG

∵DF=DC,正方形的边长为4

ED=2CG=6

BG=BC+CG=10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某社区计划对面积为3600m2的区域进行绿化经投标由甲乙两个工程队来完成,已知甲队4天能完成绿化的面积等于乙队8天完成绿化的面积甲队3天能完成绿化的面积比乙队5天能完成绿化面积多50m2

(1)求甲、乙两工程队每天能完成绿化的面积;

(2)若甲队每天化费用是1.2万元,乙队每天绿化费用为0.5万元,要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应荆州市创建全国文明城市号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).

(1)求yx之间的函数关系式,并写出自变量x的取值范围;

(2)若矩形空地的面积为160m2,求x的值;

(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.

单价(元/棵)

14

16

28

合理用地(m2/棵)

0.4

1

0.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习三角形的知识时, 发现如下三个有趣的结论:

(1)如图①, A=∠C90°, ABC的平分线与∠ADC的平分线交于点E, BEDE的位置关系是

(2)如图②, A=∠C90°, BE平分∠ABC, DF平分∠ADC的外角, BEDF的位置关系是

(3)如图③, A=C90°, ABC的外角平分线与∠ADC的外角平分线交于点E, BEDE的位置关系是 . 请你完成命题 (3)证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,四边形ABCD中,AB=3cmAD=4cmBC=13cmCD=12cm,且∠A=90°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(10),点D的坐标为(02),延长CBx轴于点A1,作正方形A1B1C1C,延长C1B1x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,正方形A2018B2018C2018C2017的面积为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,∠A=140°D=80°.

(1)如图1,若∠B=C,试求出∠C的度数;

(2)如图2,若∠ABC的角平分线BEDC于点E,且BEAD,试求出∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抚顺市某校想知道学生对遥远的赫图阿拉”,“旗袍故里等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:

(1)本次调查了多少名学生?

(2)补全条形统计图;

(3)该校共有500名学生,请你估计十分了解的学生有多少名?

(4)在被调查十分了解的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△BDE都是等边三角形。则下列结论:①AE=CD.②BF=BG.③HBFG.④∠AHC=60.⑤△BFG是等边三角形,其中正确的有___.

查看答案和解析>>

同步练习册答案