【题目】某社区计划对面积为3600m2的区域进行绿化,经投标,由甲,乙两个工程队来完成,已知甲队4天能完成绿化的面积等于乙队8天完成绿化的面积,甲队3天能完成绿化的面积比乙队5天能完成绿化面积多50m2
(1)求甲、乙两工程队每天能完成绿化的面积;
(2)若甲队每天化费用是1.2万元,乙队每天绿化费用为0.5万元,要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?
【答案】(1)甲每天绿化100 ,乙每天绿化50,(2)至少安排乙绿化天.
【解析】
(1)设甲工程队每天能完成绿化的面积是am2,乙工程队每天能完成绿化的面积是bm2,根据甲队4天能完成绿化的面积等于乙队8天完成绿化的面积,甲队3天能完成绿化的面积比乙队5天能完成绿化面积多50m2.列方程组求解;
(2)设乙工程队施工m天,则甲工程队施工天,由总费用不超过40万元,列不等式求解即可.
解:(1)设甲工程队每天能完成绿化的面积是am2,乙工程队每天能完成绿化的面积是bm2,根据题意得
,
解得:,
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)设乙工程队施工m天刚好完成绿化任务,由题意得:
所以
所以
所以
所以的最小整数值是32.
答:至少应安排乙工程队绿化32天.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知 AD 是△ABC 的边 BC 上的中线.
(1)作出△ABD 的边 BD 上的高.
(2)若△ABC 的面积为 10,求△ADC 的面积.
(3)若△ABD 的面积为 6,且 BD 边上的高为 3,求 BC 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知两个等腰Rt△ABC,Rt△CEF有公共顶点C,∠ABC﹣∠CEF=90°,连接AF,M是AF的中点
(1)如图1,当CB与CE在同一直线上时,连接CM,若CB=1,CE=2,求CM的长.
(2)如图2,连接MB,ME,当∠BCE=45°时,求证:BM=ME.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,给出五个等量关系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.
请你以其中两个为条件,另外三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.
已知:
求证:
证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:
(1)△AFG≌△AFP;
(2)△APG为等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com