【题目】某商场销售A、B两种品牌的洗衣机,进价及售价如下表:
(1)该商场9月份用45000元购进A、B两种品牌的洗衣机,全部售完后获利9600元,求商场9月份购进A、B两种洗衣机的数量;
(2)该商场10月份又购进A、B两种品牌的洗衣机共用去36000元,
①问该商场共有几种进货方案?请你把所有方案列出来.
②通过计算说明洗衣机全部销售完后哪种进货方案所获得的利润最大.
【答案】(1)A品牌购进12台,B品牌购进15台;(2)①有三种,方案一:A品牌6台,B品牌15台;方案二:A品牌12台,B品牌10台;方案三:A品牌18台,B品牌5台;②方案一:A品牌6台,B品牌15台的利润最大,理由见解析
【解析】
(1)设A品牌购进台,B品牌购进y台,根据总进价45000元和利润9600元列方程组求出x、y的值即可得答案;
(2)①根据总进价36000元得出关于a、b的二元一次方程,根据a、b为正整数求出方程的解即可;
②分别求出三种方案的利润,即可得答案.
(1)设A品牌购进台,B品牌购进y台,
∵商场9月份用45000元购进A、B两种品牌的洗衣机,全部售完后获利9600元,
∴,
解得:.
答:A品牌购进12台,B品牌购进15台.
(2)①设A品牌购进台,B品牌购进台,
∵购进A、B两种品牌的洗衣机共用去36000元,
∴
∴
∵a、b为正整数,
∴方程的解为,,,
∴购买方案有三种,
方案一:品牌6台,品牌15台;
方案二:品牌12台,品牌10台;
方案三:品牌18台,品牌5台.
②方案一利润:,
方案二利润:,
方案三利润:,
∵
∴方案一利润最大.
科目:初中数学 来源: 题型:
【题目】如图,己知正方形ABCD的边长为4, P是对角线BD上一点,PE⊥BC于点E, PF⊥CD于点F,连接AP, EF.给出下列结论:①PD=EC:②四边形PECF的周长为8;③△APD一定是等腰三角形:④AP=EF;⑤EF的最小值为;⑥AP⊥EF.其中正确结论的序号为( )
A. ①②④⑤⑥B. ①②④⑤
C. ②④⑤D. ②④⑤⑥
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD∥BE∥CF,它们以此交直线l1、l2于点A、B、C和D、E、F.若,AC=14,
(1)求AB的长.
(2)如果AD=7,CF=14,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知一次函数的图象与轴,轴分别交于点,.以为边在第一象限内作等腰,且,.过作轴于点.的垂直平分线交于点,交轴于点.
(1)求点的坐标;
(2)连接,判定四边形的形状,并说明理由;
(3)在直线上有一点,使得,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是( )
A、小莹的速度随时间的增大而增大B、小梅的平均速度比小莹的平均速度大
C、在起跑后180秒时,两人相遇D、在起跑后50秒时,小梅在小莹的前面
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠BAD=44°,AB的垂直平分线交对角线AC于点F,垂足为E,连结DF,则∠CDF等于( )
A. 112°B. 114°C. 116°D. 118°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,∠ADC=90°,AB=AC.点E、F分别为AC、BC的中点,连结EF、DE.
(1)请在图1中找出长度相等的两条线段?并说明理由.(AB=AC除外)
(2)如图2,当AC平分∠BAD,∠DEF=90°时,求∠BAD的度数.
(3)如图3,四边形CDEF是边长为2的菱形,求S四边形ABCD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com