【题目】已知:射线在的内部,,,平分.
(1)如图,若点,,在同一条直线上,是内部的一条射线,请根据题意补全图形,并求的度数;
(2)若,直接写出的度数(用含的代数式表示).
【答案】(1)图详见解析,;(2)当射线在的内部时,; 当射线在的外部时,.
【解析】
(1)作出∠AOD的平分线OE,根据∠AOC:∠BOC=8:1求出∠BOC=20°,依据∠COD=2∠COB得∠COD=40°,从而可求∠AOD=120°,根据OE平分∠AOD得∠DOE=60°,从而可求出的度数;
(2)分两种情况考虑:当射线在的内部时,;当射线在的外部时,.
(1)补全图形,如图所示:
∵点,,在同一条直线上,
∴(平角的定义) .
∵,
∴, .
∵,
∴.
∴
∵平分,
∴(角平分线的定义).
∴
(2)①当射线在的内部时,如图,
∵,
∴∠AOC=8α,
∵
∴
∴∠AOD=∠AOC-∠COD=6α,
∵平分
∴∠DOE=∠AOD=3α,
∴∠COE=∠COD+∠DOE=2α+3α=5α;
当射线在的外部时,如图,
∵,
∴∠AOC=8α,
∵
∴,∠BOD=α
∴∠AOD=∠AOC+∠COD=10α,
∵平分
∴∠DOE=∠AOD=5α,
∴∠COE=∠DOE -∠COD =5α-2α=3α.
科目:初中数学 来源: 题型:
【题目】如图,函数y1=的图象与函数y2=kx+b的图象交于点A(﹣1,a)B(﹣8+a,1)
(1)求函数y=和y=kx+b的表达式;
(2)观察图象,直接写出不等式<kx+b的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化.
(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)
(2)求出当a=10,b=12时的绿化面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图是按规律排列的一组图形的前三个,观察图形,并在空白处填空
(1)第五个图形中,一共有_______个点
(2)请用n的代数式表示出第n个图形中点的数量__________
(3)第100个图形中一共有_______个点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的我们可以计算出多项式的展开式,如:(a+b)1=a+b,
(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,…下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数是可以单独列成表中的形式:
上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)展开式中共有多少项?
(2)请写出多项式的展开式?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2,善于思考的小明进行了以下探索:
设a+b(其中a、b、m、n均为整数),
则有:a+b,∴a=m2+2n2,b=2mn,这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b,用含m、n的式子分别表示a、b得:a= ,b= ;
(2)利用所探索的结论,用完全平方式表示出:7+4= .
(3)请化简:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学抽取20名学生统计某月的用笔数量情况,结果如下表:
用笔数(支) | 4 | 5 | 6 | 8 | 9 |
学生数 | 4 | 4 | 7 | 3 | 2 |
则关于这20名学生这个月的用笔数量的描述,下列说法正确的是( ) .
A. 众数是7支 B. 中位数是6支 C. 平均数是5支 D. 方差为0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①符号不同的两个数互为相反数;②多个有理数相乘,负因数的个数为奇数个时积为负;③若A,M,B三点在同一直线上,且AM=AB,则M为线段AB的中点;④比一个钝角小90°的角一定和这个钝角的补角互余.其中正确的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com