| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 由等边三角形的性质得出AB=DB,∠ABD=∠CBE=60°,BE=BC,得出∠ABE=∠DBC,由SAS即可证出△ABE≌△DBC;
由△ABE≌△DBC,得出∠BAE=∠BDC,根据三角形外角的性质得出∠DMA=60°;
由ASA证明△ABP≌△DBQ,得出对应边相等BP=BQ,即可得出△BPQ为等边三角形;
证明P、B、Q、M四点共圆,由圆周角定理得出∠BMP=∠BMQ,即MB平分∠AMC.
解答 解:∵△ABD、△BCE为等边三角形,
∴AB=DB,∠ABD=∠CBE=60°,BE=BC,
∴∠ABE=∠DBC,∠PBQ=60°,
在△ABE和△DBC中,$\left\{\begin{array}{l}{AB=DB}&{\;}\\{∠ABE=∠DBC}&{\;}\\{BE=BC}&{\;}\end{array}\right.$,
∴△ABE≌△DBC(SAS),
∴①正确;
∵△ABE≌△DBC,
∴∠BAE=∠BDC,
∵∠BDC+∠BCD=180°-60°-60°=60°,
∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,
∴②正确;
在△ABP和△DBQ中,$\left\{\begin{array}{l}{∠BAP=∠BDQ}&{\;}\\{AB=DB}&{\;}\\{∠ABP=∠DBQ=60°}&{\;}\end{array}\right.$,
∴△ABP≌△DBQ(ASA),
∴BP=BQ,
∴△BPQ为等边三角形,
∴③正确;
∵∠DMA=60°,
∴∠AMC=120°,
∴∠AMC+∠PBQ=180°,
∴P、B、Q、M四点共圆,
∵BP=BQ,
∴$\widehat{BP}=\widehat{BQ}$,
∴∠BMP=∠BMQ,
即MB平分∠AMC;
∴④正确;
综上所述:正确的结论有4个;
故选:D.
点评 本题考查了等边三角形的性质与判定、全等三角形的判定与性质、四点共圆、圆周角定理;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | △ABC绕点C顺时针旋转90°,再向下平移3 | |
| B. | △ABC绕点C顺时针旋转90°,再向下平移1 | |
| C. | △ABC绕点C逆时针旋转90°,再向下平移1 | |
| D. | △ABC绕点C逆时针旋转90°,再向下平移3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | △ABE | B. | △ACF | C. | △ABD | D. | △ADE |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (3,-3) | B. | (-3,3) | C. | (3,3)或(-3,-3) | D. | (3,-3)或(-3,3) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{8}{3}\sqrt{3}$cm2 | B. | 8cm2 | C. | $\frac{16}{3}\sqrt{3}$cm2 | D. | 16cm2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com