精英家教网 > 初中数学 > 题目详情

【题目】如图,直线AB、CD、EF相交于点O.
(1)写出∠COE的邻补角;
(2)分别写出∠COE和∠BOE的对顶角;
(3)如果∠BOD=60°,AB⊥EF,求∠DOF和∠FOC的度数.

【答案】
(1)解:∠COE的邻补角为∠COF和∠EOD
(2)解:∠COE和∠BOE的对顶角分别为∠DOF和∠AOF
(3)解:∵AB⊥EF,

∴∠AOF=∠BOF=90°,

∴∠DOF=∠BOF﹣∠BOD=90°﹣60°=30°,

又∵∠AOC=∠BOD=60°,

∴∠FOC=∠AOF+∠AOC=90°+60°=150°


【解析】(1)根据邻补角的定义即可得到结论;(2)根据对顶角的定义得到结论;(3)由垂直的定义得到∠AOF=∠BOF=90°,根据角的和差即可得到结论.
【考点精析】通过灵活运用对顶角和邻补角和垂线的性质,掌握两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个;垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知tanβ=22.3,则β=(精确到1″)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(﹣0.125)2017×82018= ____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式.

(1)x2(x﹣y)+y2(y﹣x)

(2)(a2+1)﹣4a2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)9x2=16.
(2)(x﹣4)2=4
(3) (x+3)3﹣9=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0);⑤m2﹣n2,2mn,m2+n2(m,n为正整数,且mn)其中可以构成直角三角形的有(  )

A. 5组 B. 4组 C. 3组 D. 2组

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设x是实数,y=|x-1|+|x+1|,下列结论正确的是(  ).
A.y没有最小值
B.只有一个x使y取到最小值
C.有有限多个x(不止一个)使y取到最小值
D.有无穷多个x使y取到最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.

(1)求A,B两种商品每件多少元?

(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?

查看答案和解析>>

同步练习册答案