分析 过P作PD⊥OB于点D,在直角三角形POD中,利用含30度直角三角形的性质求出OD的长,再由PM=PN,利用等腰三角形三线合一的性质得到D为MN中点,根据MN=2求出DN的长,由OD+DN即可求出ON的长.
解答 解:过P作PD⊥OB于点D,
在Rt△OPD中,∵∠ODP=90°,∠POD=60°,
∴∠OPD=30°,
∴OD=$\frac{1}{2}$OP=$\frac{1}{2}$×8=4cm,
∵PM=PN,PD⊥MN,MN=2cm,
∴MD=ND=$\frac{1}{2}$MN=1cm,
∴ON=OD+DN=4+1=5cm.
故答案为:5.
点评 此题考查了含30度直角三角形的性质,等腰三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半;等腰三角形三线合一.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| x | … | -2 | -1 | 0 | 1 | 2 | … |
| y | … | 0 | 4 | 6 | 6 | 4 | … |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com