【题目】学习概率知识后,小庆和小丽设计了一个游戏,在一个不透明的布袋A里面装有三个分别标有数字3,4,5的小球(小球除数字不同外,其余都相同);同时制作了一个可以自由转动的转盘B,转盘B被平均分成2部分,在每一部分内分别标上数字1,2.现在其中一人从布袋A中随机摸取一个小球,记下数字为x;另一人转动转盘B,转盘停止后,指针指向的数字记为y(若指针指在边界线上时视为无效,重新转动),从而确定点P的坐标为P(x,y).
(1)请用树状图或列表的方法写出所有可能得到的点P的坐标;
(2)若S=xy,当S为奇数时小庆获胜,否则小丽获胜,你认为这个游戏公平吗?对谁更有利呢?
【答案】(1)所有可能得到的点P坐标为(3,1);(4,1);(5,1);(3,2);(4,2);(5,2)共6种;(2)游戏不公平,对小丽更有利.
【解析】试题分析:(1)用列表法列出所有的可能性结果,总共有6种可能的情况。
(2)计算出不同情况下S的值,则S为奇数时的可能情况为2种,即P(小庆获胜的概率为,P(小丽获胜)的概率为,所以游戏不公平,对小丽更有利。
解:(1)列表如下:
1 | 2 | |
3 | (3,1) | (3,2) |
4 | (4,1) | (4,2) |
5 | (5,1) | (5,2) |
由表格得所有可能得到的点P坐标为(3,1);(4,1);(5,1);(3,2);(4,2);(5,2)共6种;
(2)S为奇数的情况有(3,1);(5,1)共2种,即P(小庆获胜)==;P(小丽获胜)=1﹣=,
∵<,
∴该游戏不公平,对小丽更有利.
科目:初中数学 来源: 题型:
【题目】甲、乙两盒中各有3张卡片,卡片上分别标有数字﹣7、﹣1、3和﹣2、1、6,这些卡片除数字外都相同.把卡片洗匀后,从甲、乙两盒中各任意抽取1张,并把抽得卡片上的数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.
(1)列出这样的点所有可能的坐标;
(2)求这些点落在第二象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的 夹角叫做智慧角.
(1)在 Rt△ABC 中,∠ACB=90°,若∠A 为智慧角,则∠B 的度数为 ;
(2)如图①,在△ABC 中,∠A=45°,∠B=30°,求证:△ABC 是智慧三角形;
(3)如图②,△ABC 是智慧三角形,BC 为智慧边,∠B 为智慧角,A(3,0),点 B,C 在函数 y= (x>0)的图像上,点 C 在点 B 的上方,且点 B 的纵坐标为.当△ABC是直角三角形时,求 k 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D、E,BC的延长线与⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)已知AC=2,EB=4CE,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲地的海拔高度是米,乙地的海拔高度比甲地海拔高度的倍多米,丙地的海拔高度比甲地海拔高度的倍少米.
(1) 三地的海拔高度和一共是多少米?;
(2) 乙地的海拔高度比丙地的海拔高度高多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12)符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据
月份n(月)1 | 1 | 2 |
成本y(万元/件) | 11 | 12 |
需求量x(件/月) | 120 | 100 |
(1)直接写出k的值;
(2)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(3)推断是否存在某个月既无盈利也不亏损.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:
(1)稿费不高于800元的不纳税;
(2)稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;
(3)稿费为4000元或高于4000元的应缴纳全部稿费的11%的税,
试根据上述纳税的计算方法作答:
①若王老师获得的稿费为2400元,则应纳税________元,若王老师获得的稿费为4000元,则应纳税________元.
②若王老师获稿费后纳税420元,求这笔稿费是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=30°,点D在△ABC外,且BD=2.连AD、CD,则△ACD的周长最小值为( )
A. 1B. C. 2D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com