精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AD是∠BAC的平分线,直线EF⊥AD,分别与AB、AC及BC的延长线交于点E、F、K,求证:∠K=
12
(∠ACB-∠B).
分析:先根据AD平分∠BAC,得出∠BAD=∠DAC=
1
2
∠BAC,再由EF⊥AD,可知∠DOK=90°,根据直角三角形的性质即可得出结论.
解答:证明:∵AD平分∠BAC,
∴∠BAD=∠DAC=
1
2
∠BAC,
∵EF⊥AD,
∴∠DOK=90°,
∴∠K=90°-∠ADK=90°-(∠B+
∠ABC
2
),
1
2
∠BAC=90°-
1
2
(∠B+∠ACB),
∴∠K=90°-∠B-90°+
1
2
∠B+
1
2
∠ACB=
1
2
(∠ACB-∠B).
点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案