精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数数学公式的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,-1),DE=3.
(1)求反比例函数与一次函数的解析式;
(2)求△CDE的面积.

解:(1)∵点C(6,-1)在反比例y=图象上,
∴将x=6,y=-1代入反比例解析式得:-1=,即m=-6,
∴反比例解析式为y=-
∵点D在反比例函数图象上,且DE=3,即D纵坐标为3,
将y=3代入反比例解析式得:3=-,即x=-2,
∴点D坐标为(-2,3),
设直线解析式为y=kx+b,将C与D坐标代入得:
解得:
∴一次函数解析式为y=-x+2;
(2)过C作CH⊥x轴于点H,
∵C(6,-1),∴CH=1,
对于一次函数y=-x+2,令y=0,求得x=4,故A(4,0),
由D坐标(-2,3),得到E(-2,0),
∴AE=OA+OE=6,
∴S△CDF=S△CAE+S△DAE=×6×1+×6×3=12.
分析:(1)将C坐标代入反比例解析式中求出m的值,确定出反比例解析式,再由DE为3得到D纵坐标为3,将y=3代入反比例解析式中求出x的值,即为D的横坐标,设直线解析式为y=kx+b,将D与C的坐标代入求出k与b的值,即可确定出一次函数解析式;
(2)过C作CH垂直于x轴,由C、D的纵坐标确定出DE与CH的长,分别为三角形ADE与三角形ACE中AE边上的高,由三角形CDE的面积=三角形AED的面积+三角形AEC的面积,求出即可.
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,一次函数与坐标轴的交点,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案