分析 作OD⊥AB于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=S扇形AOC得出阴影部分的面积是⊙O面积的$\frac{1}{3}$,即可得出结果.
解答 解:作OD⊥AB于点D,连接AO,BO,CO,如图所示:
∵OD=$\frac{1}{2}$AO
∴∠OAD=30°,
∴∠AOB=2∠AOD=120°,
同理∠BOC=120°,
∴∠AOC=120°,
∴阴影部分的面积=S扇形BOC=$\frac{1}{3}$×⊙O面积=$\frac{1}{3}$×π×62=12π;
故答案为:12π.
点评 本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定∠AOC=120°.
科目:初中数学 来源: 题型:选择题
A. | 对角线互相垂直的四边形是菱形 | |
B. | 对角线相等且垂直的四边形是正方形 | |
C. | 平行四边形的对角线互相平分 | |
D. | 对角线相等的四边形是矩形 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com