精英家教网 > 初中数学 > 题目详情
13.如图,图①是棱长为4cm的立方体,沿其相邻三个面的对角线(虚线)裁掉一个角,得到如图②的几何体,则一只蚂蚁沿着图②几何体的表面,从顶点A爬到顶点B的最短距离为(2$\sqrt{2}$+2$\sqrt{6}$)cm.

分析 要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.

解答 解:如图所示:
△BCD是等腰直角三角形,△ACD是等边三角形,
在Rt△BCD中,CD=$\sqrt{B{C}^{2}+B{D}^{2}}$=4$\sqrt{2}$cm,
则BE=$\frac{1}{2}$CD=2$\sqrt{2}$cm,
在Rt△ACE中,AE=$\sqrt{A{C}^{2}-C{E}^{2}}$=2$\sqrt{6}$cm,
答:从顶点A爬行到顶点B的最短距离为(2$\sqrt{2}$+2$\sqrt{6}$)cm.
故答案为:(2$\sqrt{2}$+2$\sqrt{6}$).

点评 此题考查了平面展开-最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.方程$\frac{1}{x}-\frac{1-x}{2x}=1$去分母后的结果正确的是(  )
A.2-1-x=1B.2-1+x=1C.2-1+x=2xD.2-1-x=2x

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).
(1)求证:AF∥CE;
(2)当t为何值时,四边形EHFG为菱形;
(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,△ABC是等腰直角三角形,AB=4,∠ACB=90°,MA⊥AB,动点P、Q分别从A,C同时出发,沿射线AM、AC方向运动,Q的运动速度为1单位/秒,P点运动速度是$\sqrt{2}$单位/秒,设它们运动时间为t(s),线段PB交射线AC于D点,
(1)当t=1时,求证:△PBQ是等腰直角三角形.
(2)过D点作DE⊥BD交BQ延长线于E点,问△ABE的面积是否是一个定值?如果是,求出这个定值;如果不是,请说明理由.
(3)直接写出当t=4-2$\sqrt{2}$时,PE∥DQ.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动,动点Q从点B开始沿边BC向C以4mm/s的速度移动,如果P、Q分别从A、B同时出发,那么PBQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.将矩形纸片ABCD如图折叠,使点B与点D重合,折痕为GH.
(1)试说明:AG=GF;
(2)试说明:四边形DGBH是菱形;
(1)若AB=12,BC=16.求GH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在以下回收、绿色食品、节能、节水四个标志中,是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB‖ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点.现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=-$\frac{1}{3}$. 
①求点D的坐标及该抛物线的解析式;
②连结CD.问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.

查看答案和解析>>

同步练习册答案