精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为,点P为对角线BD上一动点,点E在射线BC上,

(1)填空:BD=______;

(2)BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);

(3)若点E是直线AP与射线BC的交点,当PCE为等腰三角形时,求∠PEC的度数.

【答案】(1)BD=2 (2) (3)120° 30°

【解析】.

(1)根据勾股定理计算即可

(2)连接AP,当APPE在一条线上时,PE+PC最小,利用勾股定理求出最小值;

(3)分两种情况考虑:EBC延长线上时,如图2所示,PCE为等腰三角形,则CP=CE;②EBC上,如图3所示,PCE是等腰三角形,则PE=CE,分别求出PEC的度数即可.

1)BD==2 ;

(2)如图1所示:当APPE在一条线上时,PE+PC最小,

AB=,BE=t,

PE+PC的最小值为

(3)分两种情况考虑:

①当点EBC的延长线上时,

如图2所示,PCE是等腰三角形,则CP=CE,

∴∠CPE=CEP,

∴∠BCP=CPE+CEP=2CEP,

∵在正方形ABCD中,∠ABC=90°,

∴∠PBA=PBC=45°,

ABPCBP中,

∴△ABP≌△CBP(SAS),

∴∠BAP=BCP=2CEP,

∵∠BAP+PEC=90°,

2PEC+PEC=90°,

∴∠PEC=30°;

②当点EBC上时,

如图3所示,PCE是等腰三角形,则PE=CE,

∴∠CPE=PCE,

∴∠BEP=CPE+PCE=2ECP,

∵四边形ABCD是正方形,

∴∠PBA=PBC=45°,

AB=BC,BP=BP,

∴△ABP≌△CBP,

∴∠BAP=BCP,

∵∠BAP+AEB=90°,

2BCP+BCP=90°,

∴∠BCP=30°,

∴∠AEB=60°,

∴∠PEC=180°-AEB=120° .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将一副直角三角尺的直角顶点C叠放在一起.

(1)如图 1,若 CE 恰好是∠ACD 的角平分线,请你猜想此时 CD 是不是∠ECB 的角平分线?只回答出“是”或“不是”即可;

(2)如图 2,若∠ECD=α,CD 在∠BCE 的内部,请你猜想∠ACE 与∠DCB是否相等?并简述理由;

(3)在(2)的条件下,请问∠ECD 与∠ACB 的和是多少?并简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是(
A.240°
B.360°
C.480°
D.540°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x+5(k1<0)的图象与坐标轴交于A,B两点,与反比例函数y= (k2>0)的图象交于M,N两点,过点M作MC⊥y轴于点C,已知CM=1.

(1)求k2﹣k1的值;
(2)若 = ,求反比例函数的解析式;
(3)在(2)的条件下,设点P是x轴(除原点O外)上一点,将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=2x+bb0)与坐标轴交于AB两点,与双曲线x0)交于D点,过点DDCx轴,垂足为G,连接OD.已知AOB≌△ACD

1)如果b=﹣2,求k的值;

2)试探究kb的数量关系,并写出直线OD的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的菱形ABCD中,∠B=45°,AEBC边上的高,将ABE沿AE所在直线翻折得ABEABCD边交于点F,则BF的长度为(

A. 1 B. C. 2-2 D. 2-

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某家电销售商场电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13200元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】α为锐角,且关于x的一元二次方程 有两个相等的实数根,则α=(
A.30°
B.45°
C.30°或150°
D.60°

查看答案和解析>>

同步练习册答案