精英家教网 > 初中数学 > 题目详情

【题目】如图,在一块直角三角板ABC中,C=90°A=30°BC=1,将另一个含30°角的EDF30°角的顶点D放在AB边上,EF分别在ACBC上,当点DAB边上移动时,DE始终与AB垂直,若CEFDEF相似,则AD=

【答案】

【解析】

试题由于EDF=30°,且DE总垂直于AB,因此FDB=60°,此时发现FDB是等边三角形,那么BD=BF2﹣AD=1﹣CF,即AD=CF+1.由于C是直角,当CEFDEF相似时,DEF必为直角三角形,那么可分两种情况讨论:DEF=90°,此时,CEF∽△DEFDFE=90°,此时CEF∽△FED;可根据各相似三角形得到的比例线段求出CF的值,进而可求得AD的值.

解:∵∠EDF=30°EDABD

∴∠FDB=B=60°

∴△BDF是等边三角形;

BC=1AB=2

BD=BF

2﹣AD=1﹣CF

AD=CF+1

如图1FED=90°CEF∽△EDF

=,即=

解得,CF=

AD=+1=

如图2EFD=90°CEF∽△FED

=,即=

解得,CF=

AD=+1=

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于⊙O,AD、AE分别平分∠BAC和△BAC的外角∠BAF,且分别交圆于点D、F,连接DE,CD,DE与BC相交于点G.

(1)求证:DE是△ABC的外接圆的直径;

(2)设OG=3,CD=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,两个边长都为4cm的正方形ABCD和正方形OEFG,O是正方形ABCD的对称中心,则图中阴影部分的面积为_______cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中放有四张分别写有数字1、2、3、4的红色卡片和三张分别写有数字1、2、3的蓝色卡片,卡片除颜色和数字外其它完全相同

(1)从中任意抽取一张卡片,则该卡片上写有数字1的概率是;

(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率(请利用树状图或列表法说明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AD是直角三角形ABC斜边上的中线AEADCB延长线于E则图中一定相似的三角形是(  

A. AED与△ACB B. AEB与△ACD C. BAE与△ACE D. AEC与△DAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题10分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.

(1)求证:FE⊥AB;

(2)当EF=6,=时,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,点F、C⊙O上且连接AC、AF,过点CCD⊥AFAF的延长线于点D.

(1)求证:CD⊙O的切线;

(2), CD=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).

(1)求证:方程有两个不相等的实数根;

(2)若方程的两个实数根都是整数,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为__

查看答案和解析>>

同步练习册答案