精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为__

【答案】﹣2≤m<﹣1.

【解析】

根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.

y=x2﹣4,

∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,

∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,

∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,

解得,﹣2≤m<﹣1,

故答案为:﹣2≤m<﹣1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ADBCDEAD上一点,BE的延长线交ACF,若BD=ADDE=DC.

1)求证BFAC

2)若AE=2BE=4AF=,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则(  )

A. C∠α的大小有关

B. ∠α=45°时,S=

C. A,B,C,D四个点可以在同一个圆上

D. S∠α的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,

(1)求DE的长;

(2)过点EF作EF⊥CE,交AB于点F,求BF的长;

(3)过点E作EG⊥CE,交CD于点G,求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中,∠CAB=90°,AC=AB=3,△CDE中,CDE=90°,CD=DE=5,连接BE,取BE中点F,连接AF、DF.

(1)如图1,若C、B、E三点共线,H为BC中点.

直接指出AF与DF的关系   

直接指出FH的长度   

(2)将图(1)中的CDE绕C点逆时针旋转a(如图2,0°<α<180°),试确定AF与DF的关系,并说明理由;

(3)在(2)中,若AF=,请直接指出点F所经历的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点PPBl于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A的中点.

(1)求证:直线l是⊙O的切线;

(2)若PA=6,求PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是某市200945日至14日每天最低气温的折线统计图.

(1)图2是该市200745日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;

(2)在这10天中,最低气温的众数是____,中位数是____,方差是_____

(3)请用扇形图表示出这十天里温度的分布情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知动点A在函数y=(x>0)的图象上,ABx轴于点B,ACy轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点P,Q,当QE:DP=9:25时,图中的阴影部分的面积等于___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数y=图象上的任意一点,过点A作AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则SDEC﹣SBEA=_________

查看答案和解析>>

同步练习册答案